




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、75kw-4极变频调速同步电动机电磁方案及控制系统的设计75kw-4极变频调速同步电动机电磁方案及控制系统的设计目录摘要IAbstractII第一章 同步电机概论11.1同步电机的基本特点11.2同步电机的基本类型11.3同步电机的基本结构21.4同步电机主要用途41.5基本技术要求4第二章 同步电动机的工作特性72.1同步电动机的工作原理72.2凸极同步电动机工作特性及分析82.3同步电动机的功率平衡关系10第三章 电机设计基本方法113.1总体设计过程113.2电磁设计11第四章 电磁设计方案计算144.1设计要求144.2方案计算14第五章 电磁设计结果分析405.1复算程序405.2方
2、案结果比较与分析405.3心得与总结42第六章 同步电动机变频调速系统设计436.1同步调速系统类型436.2变频调速系统的基本控制类型436.3同步电动机矢量控制系统44第七章 Auto CAD 2004绘图497.1Auto CAD简介497.2画定子冲片图497.3画转子冲片图507.4画绕组图51参考文献54总结55致谢561.1同步电机的基本特点1.2同步电机的基本类型1.3同步电机的基本结构1.4同步电机主要用途1.5基本技术要求2.1同步电动机的工作原理2.2凸极同步电动机工作特性及分析b)2.3同步电动机的功率平衡关系3.1总体设计过程3.2电磁设计4.1设计要求4.2方案计算
3、方案一方案二方案三一、额定数据和技术要求1额定功率7575752相数3333额定线电压4004004004额定相电压230.94230.94230.945额定频率5050506极数4447额定效率0.9150.9150.9158额定功率因数0.9500.9500.9509额定相电流125.22125.22125.2210额定转速15001500150011额定转矩477.45477.45477.4512机座中心高(cm)25252513定子槽满率8085%80.1%14定子绕组电密79.5A/mm28.2115气隙磁密0.730.88T0.85二、定子冲片设计16定子外径43434317定子内
4、径30303018定子槽数48484819电枢拼片条件(1)每圈扇形片数666(2)重叠数222(3)每片槽数888(4)扇形片高8.518.518.51(5)扇形片宽21.521.521.5(6)无轴流拼片条件66620每极每相槽数44421极距23.5523.5523.5522定子槽形(1) 0.320.320.32(2)0.90.90.9(3)0.10.10.1(4)0.150.150.15(5)1.251.251.25(6)R0.510.510.5123每槽有效面积为绝缘层厚度,E级取=0.027cm,为槽楔厚,取为0.2cm, =2r1.381.381.38(1)直径位置303030
5、槽节距1.9631.9631.963槽宽0.320.320.32齿 宽1.6431.6431.643(2)直径位置30.530.530.5槽节距1.9951.9951.995槽宽0.90.90.9齿 宽1.0951.0951.095(3)直径位置333333槽节距2.1592.1592.159槽宽1.021.021.02齿 宽1.1391.1391.13925定子齿距1.9631.9631.96325平均齿宽=1/3×bz2,bz3中之大者+2(bz2,bz3之最小者)1.1101.1101.11027电枢卡氏系数其中:槽节距1.0731.0731.073三、转子冲片设计28气隙长度
6、=0.120.120.1229最大气隙0.1450.1450.14530转子外径29.7629.7629.7631磁轭外径17171732转子(磁轭)内径88833磁极宽度999磁极尺寸计算(1)0.20.20.2(2)2.5692.5692.569(3)3.8113.8113.811(4)1.7791.7791.779(5)16.01816.01816.018(6)31.97331.97331.973(7)5.15.15.1(8)33.06233.06233.062(9)6.0846.0846.084(10)23.37823.37823.378(11)8.3518.3518.35135磁极压
7、板厚0.40.40.436磁极压板宽8.28.28.237气隙极距比值0.0050.0050.00538气隙比值1.2081.2081.20839极抱百分值0.7250.7250.72540磁极抱角32.62532.62532.62541等效极弧系数(查曲线1及2)用公式计算见附录一0.6440.6440.64442波形系数 (查曲线1及2)或用基波幅值系数,用公式计算见附录一1.1281.1281.12843磁极偏心距偏心半径:=14.6340.2460.2460.246四、电枢绕组和铁心长度计算44绕组并联支路数22245估算每槽导体所占面积1.1041.1041.10446选择每槽导体数
8、注意:选偶数10111047电枢绕组节距单层匝数=101110双层匝数= 55548每相串联导体数 (q=2,3,4或5)80848049 线负荷319.032334.983319.03250估算每根导体的截面积0.0870.0790.08751每根导线并 绕根数n33352电枢线规裸径/绝缘径 /0.9380.9520.938截面积 0.02540.02540.025453电枢绕组电密 821.654821.654821.65454每槽导线所 占面积1.1061.1791.10655槽满率0.8010.850.80156绕组系数Kdp0.9250.9280.92557定子斜槽因数(一般,可不
9、计算)11185008500880058每极磁通27666612625935276666159电机铁芯长度 21.46220.3720.7360电枢铁心长21.46220.3720.7361磁极铁心长22.46221.3721.7362磁极铁心净长 21.33820.30120.64363铁心有效长21.46220.3720.7364铁心纯长20.38819.35119.69365电枢绕组尺寸(1) (y以槽数计)22.84722.84722.84718.69318.69318.69314.53914.53914.539(2)14.45114.45114.45111.82311.82311.8
10、239.1969.1969.196(3)5.5795.5795.5794.5654.5654.5653.5513.5513.551(4)26.22826.22826.22821.45921.45921.45916.69116.69116.691(5) bc取1.5cm24.46223.3723.7366每相电枢绕组长3769.0553880.1173710.52467电枢绕组每相电阻 (欧)(1)在75时 (欧)0.0540.0550.053(2)在20时 (欧)0.0440.0460.04468电枢绕组铜重 (千克)15.33715.78915.09869电枢绕组铜毛重 (千克)16.103
11、16.57815.853五、磁路计算70气隙磁密 85008500880071气隙安匝875.481875.481906.3872电枢齿磁密 15800-1660015823.06815823.06816381.5373电枢齿磁场强度, 根据查表133.133.149.3674电枢齿计算高度1.571.571.5775电枢齿安匝数51.96751.96777.49576电枢轭高度4.494.494.4977电枢轭计算高度4.664.664.6678电枢轭磁密 1456014560150741.0871.0871.08779电枢轭磁路长(拼片定子)16.87816.87816.87880电枢轭磁
12、通分布系 数 根据查表40.3530.3530.32981电枢轭磁场强度 根据查表1161620.8782电枢轭安匝数95.32495.324115.88583电枢齿轭及气隙安 匝和1022.7721022.7721099.76084极掌漏磁常数45.95644.32844.86585极身漏磁常数 为压板厚47.64845.91446.48686磁极漏磁常数102.96599.267100.48687每极漏磁通105309.329101527.33110510.7888磁极磁通28719702727463287717289漏磁系数 P 2 4 6 时 1.041.041.041.0490磁极极
13、身截面 =0.95 (1m/m钢片)198.606189.272192.35091磁极 极身磁密 140001560014460.65014410.24914957.97592磁极极身磁场强度,根据查表217.28517.0520.0693磁极极身安匝88.15486.956102.30794磁轭高度4.54.54.595转子磁轭路长4.9064.9064.90696转子磁轭长度22.46221.3721.7397转子磁轭磁密 14206.87414181.24514711.81498转子磁轭磁场强度,根据 查表322.322.1626.2999转子磁轭安匝数109.409108.723128
14、.985100残隙长度0.00870.00870.0087101残隙处截面202.154192.329195.569102残隙磁密14206.87414181.24514711.814103残隙安匝数99.43498.841102.681104每极空载的磁安匝数1319.7691317.2911433.733六、参数计算105电枢槽单位漏比磁导 从曲线3查出的计算公式见附录二1.1581.1581.158106槽面积1.6081.6081.6081071.0931.0931.0931080.8070.8070.807109互感漏磁导0.7610.7610.761110.电枢槽漏磁比磁导1.25
15、81.3621.258111.电枢绕组等效节距0.8330.8410.833112电枢绕组端接漏磁比磁导1.8862.0211.953113曲折比漏磁导1.1051.1121.105114相带漏磁比磁导(1)q=整数 (,无阻尼笼)根据y从曲线5查出,或用公式计算见附录三(2)q=分数 0.04960.04990.0496115每相电阻标幺值0.0290.0300.029116每相定子漏抗0.1460.1610.143117每相漏磁电抗标么值0.0790.0870.078118空载额定电压时的气隙与残隙磁势和974.914974.3221009.061119每相电枢反应磁势3127.38732
16、94.9853127.387120直轴电构反应常数 查曲线40.820.820.82121横轴电枢反应常数查曲线40.470.470.47122直轴电枢反应磁势2564.4572701.8882564.457123横轴电枢反应磁势1469.8721548.6431469.872124直轴电枢反应电抗标么值2.6302.7732.541125横轴电枢反应电抗标么值1.5081.5891.457126直轴同步电抗标么值2.7092.8612.619127横轴同步电抗标么值1.5871.6771.534七、短路比128电枢电抗压降磁势77.05485.18978.227129短路磁势2641.511
17、2787.0772642.684130饱和短路比 0.50.4730.543131不饱和短路比0.3690.350.382132额定电压时感应电势标么值1.0521.0561.0510.0660.0740.0651.0541.0581.053133.对应于 的空载磁势将 及各部磁密 , 均乘以C倍,并计算, 求得各部分的H及F,得对应于的空载磁势(1)2917142.52779106.82914431.2(2)8962.3248995.8079270.017923.099926.548954.791(3)16683.70216746.03117256.485 根据查表159.862.283.1
18、93.88697.654130.467(4)15351.75115409.10315878.805 根据查表124.425.1734.6411.811424.807583.962(5)1428.7961449.0081669.219(6)147115.47143838.49167733.63(7)30642582922945.33082164.8(8)15428.83815443.05916023.703 根据查表229.329.4840.5149.431150.349206.551(9)15158.07115197.64215760 根据查表330.53137.78149.641152.09
19、4185.358(10)15158.07115197.64215760.004106.091105.925109.9962017.3542043.1142388.238134满载励磁磁势-2690.89-2844.91-2712.362959.0113031.1173348.4393999.5834157.0634309.172八、励磁绕组135励磁绕组线规(1)圆线 (2)扁线 (安) 5 10 20线规 1.30 0.02540.02540.0254136励磁绕组电密初值 2 4 6 450500;500600(隐极)470498472137满载励磁电流初值11.93812.64911.9
20、89138励磁绕组每极匝数 取接近的整数336330360139满载励磁电流11.90412.59711.970140励磁绕组电密468.643495.951471.257141空载时的励磁电流3.1423.1933.186142空载额定电压时的励磁电流3.9283.9923.983143短路额定电流时的励磁电流7.8628.4467.341144.励磁绕组排列先按比例作图,确定层数及各层匝数(1) 绕组高度圆线:=沿高度方向导体数扁线:=没度度方向导体数4.2344.3664.032(2) 绕组厚度圆线: =沿高度方向导体数扁线: =没度度方向导体数3.0722.8353.456(3)几何中
21、心距(其中,)1.5361.4181.728145励磁绕组平均匝长74.36771.44074.110 =0.223.06221.97022.3309.69.69.6 =0.250.350.350.35146励磁绕组电阻(1)时 8.5398.0569.117(2)时 7.0366.6387.513(3)时 9.7779.22510.439147励磁绕组铜净重(千克)22.59521.31824.125148励磁绕组铜毛重(千克)23.83122.38325.331149额定励磁电压122.831122.643131.835九、短路电流,过载能力及暂态电抗150空载时稳定短路电流倍数0.369
22、0.3500.382151额定负载时稳定短路电流倍数1.5141.4921.631152额定负载时励磁磁势与气隙,残阳磁势和的比值4.1024.2674.2701530.4340.4650.166154考虑磁路饮和时过载能力修正系数KK对应于查曲线61.081.081.02155过载能力标么值1.7211.6961.751156励磁绕组漏磁导0.6550.6630.661157励磁绕组漏抗标么值0.1910.2020.185158励磁绕组总电抗标么值2.8212.9752.727159瞬变直轴电抗标幺值0.2570.2760.250160瞬变横轴电抗标幺值1.5871.6771.534十、额定
23、负载时的损耗及效率161冲击短路电流倍数标幺值7.3566.8487.559162额定负载时的电枢磁密16683.70216746.03117256.485163电枢齿单位铁耗(瓦/千克) 对硅钢片(瓦/千克)5.8455.8896.254164电枢齿铁重千克12.70612.06012.273165电枢齿部铁耗(瓦)当<100千伏安 取当千伏安 取148.545142.045153.502166额定负载时电枢轭部磁密15351.75115409.10315878.805167电枢轭部单位铁耗(瓦/千克)4.9494.9865.295168电枢轭部铁重千克 其中 89.21784.679
24、86.175169电枢轭部铁耗(瓦)当<100千伏安 取当千伏安 取662.327633.344684.429170电枢槽口气隙比值2.6672.6672.667171磁极表面磁密脉动系数,对应于查曲线70.20.20.20.20.20.2172磁极表面气隙磁密脉动幅值1923.1231930.3071989.147173磁极单位表面铁耗(瓦/厘米)用1mm钢片时,取槽节距 0.000550.000550.00059174磁极极掌表面铁耗0.8440.8090.874175总铁耗811.717776.198838.806176电枢绕组铜耗2524.5032598.8922485.2291
25、77励磁损耗1217.0631286.0101313.489178转子圆周速度(米/秒)23.5523.5523.55179机械损耗710.044692.575698.384180附加损耗 以千伏安为单位375375375181总损耗5.6385.7295.711182效率93%92.9%92.92%十一、主要材料重量183.铜线总重37.93137.10639.223184.硅钢片重118.472112.446114.433185.磁极钢片重50.23047.78948.5945.1复算程序5.2方案结果比较与分析单位(cm、kg)方案一方案二方案三每槽导体数101110气隙磁密850085
26、008800励磁绕组电密468.643495.951471.257电枢铁心长21.46220.3720.73电枢绕组铜重15.33715.78915.098电枢齿铁重12.70612.06012.273电枢轭部铁重89.21784.67986.175励磁绕组铜净重22.59521.31824.125铜线总重37.93137.10639.223硅钢片重118.472112.446114.433磁极钢片重50.23047.78948.594单位:(w/kg)方案一方案二方案三气隙磁密850085008800每槽导体数101110电枢齿部铁耗148.545142.045153.502电枢轭部铁耗66
27、2.327633.344684.429磁极极掌表面铁耗0.8440.8090.874总铁耗811.717776.198838.806电枢绕组铜耗2524.5032598.8922485.229励磁损耗1217.0631286.0101313.489附加损耗375375375机械损耗710.044692.575698.384总损耗(kw)5.6385.7295.711效率93%92.9%92.92%15823.06815823.06816381.531456014560150748500850088001923.1231930.3071989.147319.032334.983319.03246
28、8.643495.951471.2575.3心得与总结6.1同步调速系统类型6.2变频调速系统的基本控制类型6.3同步电动机矢量控制系统7.1Auto CAD简介7.2画定子冲片图7.3画转子冲片图7.4画绕组图1. 陈世坤 电机设计M 北京:机械工业出版社 20002. 李发海 朱东起 电机学M 北京:科学出版社 20013. 韩俊良 风力发电设备的技术特点及发展前景J 大连起重集团有限公司设计一院20044. 孙国伟 程小华 变速恒频双馈风力发电系统及其发展趋势J 华南理工大 学电力学院 2004.5. 中小电机行业发展趋势J 中国电器工业协会行业发展部 2003.16. 吴旭升 孙俊忠
29、未来电机的发展与展望J 船电技术 2003.27. 辜成林 陈乔夫 熊永前 电机学M 华中科技大学出版社 20018. 李隆年 王宝玲 电机设计M 清华大学出版社 19929. 中小型电机设计手册M 机械工业出版社 上海电器科学研究所10. 电机设计资料汇编M 南昌大学电气自动化系电机教研室 200411. 孟大伟 孔祥春 AutoCAD在电机设计中的应用J 哈尔滨电工学院学报 1991 Vol.14,No3 12. 中小型三相异步电动机电磁设计手算程序 M 南昌大学电气自动化系电机教研室13. 彭友元 电机绕组手册M 辽宁科学技术出版社14. 陈世坤编 电机设计M 机械工业出版社15. 李发
30、海等合编 电机学M 科学出版社16. 辜承林 陈桥夫 熊永前 电机学M 华中科技大学出版社17. 张跃峰等编 AUTO CAD 2004入门与提高M 清华大学出版社18. 徐刚 最新国内外电机设计制造新工艺新技术与检修及质量检测技术标准应用手册(上)M 银声音像出版社19. 张培星 变频器方案M 北京北洋电子技术有限公司20. 彭兵 相变频调速同步电动机设计D 沈阳工业大学21. 陈伯时 电力拖动自动控制系统M 机械工业出版社22. 戴文进 徐龙权 电机学M 清华大学出版社NANCHANG UNIVERSITY外文资料原文及译文(20062010年) 学 院: 信息工程学院 系 电气与自动化工
31、程系 专 业: 电气工程及其自动化 班 级: 电机电器062班 学 号: 6101106076 姓 名: 闫 永 佳 指导教师: 黄 劭 刚 起讫日期: 2008.3.24 2008.6.08 Dead-time Compensation of SVPWM Based on DSP TMS320F2812 for PMSMSong Xuelei*, Wen Xuhui, Guo Xinhua, and Zhao FengInstitute of Electrical Engineering, Chinese Academy of Sciences, Beijing, P.R.ChinaE-ma
32、il: songxlAbstractThe dead-time effect in a three-phase voltage source inverter can result in voltage losses, current waveform distortion and torque pulsation. In order to improve the current waveform and decrease the torque pulsation, this paper proposes a dead-time compensation method of SVPWM. Th
33、is method divides the i - i plane into six sectors and compensates the dead-time of SVPWM according to the sector number of stator current vector determined by the - and -axis components of the stator current vector in the two-phase static reference frame. In addition, this method can be implemented
34、 entirely through software without any extra hardware. Finally experiments based on DSP TMS320F2812 are established and made, and the experiment results indicate that the proposed method is correct and feasible.Index Terms-dead-time compensation,SVPWM,PMSM,TMS320F2812I. INTRODUCTIONBecause the perma
35、nent magnet synchronous machine (PMSM) has a lot of advantages such as high power density, high efficiency, high torque to inertia ratio, high reliability, et al1,therefore, the PMSM driving system have been widely used in many application fields, especially in hybrid electric vehicles (HEV) in rece
36、ntyears2-6. In the PMSM driving system, the three-phase voltage source inverter is usually adopted and the IGBT and MOSFET are also used because of their fast switchingfrequency. For the three-phase voltage source inverter, in order to avoid the short circuit of the dc link occurring when the two sw
37、itch devices of the same phase are turned on simultaneously, the dead-time is usually inserted in the gate driving switch signals. During the duration of the dead-time, both of the two switch device of the same phase are turned off. The existing of the dead-time will lead to a series of dead-time ef
38、fect problems such as voltage losses, current waveform distortion and torque pulsation, especially under the condition of small current or low speed.SVPWM (Space Vector Pulse Width Modulation) is a popular modulation method for three-phase voltage source inverter in motor driving system. In order to
39、 improve the current waveform of motors and decrease the torque pulsation of motors, several dead-time compensation methods of SVPWM have been researched and used in the motor driving system7-11. Most of the compensation methods are based on the theory of average voltage deviation. In this paper, a
40、novel dead-time compensation method of SVPWM, which is also based on the theory of average voltage deviation, is proposed. This method divides the i - i plane into six sectors and compensates the deadtime of SVPWM according to the stator current vector angle determined by the - and - axis components
41、 of the stator current vector in the - reference frame. In addition, this method can be implemented entirely through software without any extra hardware design. Finally experiments are made on the PMSM driving platform based on DSP TMS320F2812 to test and verify the proposed compensation method.II.
42、DEAD-TIME COMPENSATION METHODFig.1 shows the topology diagram of the PMSM driving system whose invert unit adopts the three-phase voltage source inverter. In Fig.1, Q1, Q2, Q3, Q4, Q5 and Q6 are six IGBTs of the three-phase voltage source inverter, and D1, D2, D3, D4, D5 and D6 are their reverse par
43、allel diodes respectively. In addition, the driving switch signals g1, g2, g3, g4, g5 and g6 are provided by the control unit of the driving system.Define the phase currents ia, ib and ic are positive when they flow from the inverter to PMSM, and negative when they flow from PMSM to the inverter. Th
44、ere are eight switch combination states for the six IGBTs in the threephase voltage source inverter, and during the duration of dead-time, there are correspondingly six current combination states for three-phase currents ia, ib and ic according to their polarity:(1) ia>0, ib<0 and ic<0;(2)
45、ia>0, ib>0 and ic<0;(3) ia<0, ib>0 and ic<0;(4) ia<0, ib>0 and ic>0;(5) ia<0, ib<0 and ic>0;(6) ia>0, ib<0 and ic>0.It is very important and difficult to detect the zerocross point or the polarity of each phase current.Traditionally, if the zero-cross poi
46、nt is detect directly through A/D converter of DSP or MCU, bigger measurement deviation will be led especially under the condition of small current, which will result in bigger dead-time compensation deviation and also affect the result of dead-time compensation. Therefore, this paper adopts an indi
47、rectly method to detect the zero-cross point of phase current, which is based on the current vector angle in the two-phase static reference frame.For convenient analysis and illustration, place the three-phase currents ia, ib, ic in the three-phase static reference frame and the two current components i , i of the current vector in the two-phase static reference frame into the same figure, which is shown in Fig.2. According to the polarity of three-phase currents ia, ib, ic, the i - i p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册监理工程师《合同管理》知识点:合同的订立与履行
- 2025标准版短期雇佣合同样本
- 2025年度4月份脑机交互设备固件升级技术服务合同
- 采血护士年终总结
- 房产抵押贷款合同参考模板二零二五年
- 通信基本知识
- 转让饭店股份合同书
- 二零二五版全新借钱分期付款合同
- 幕墙安装施工合同范例
- 橱柜定制保修合同范本
- 动火和受限空间作业监护人考试题有答案
- 《高频电子技术》5振幅调制解调与混频电路
- 老年肺炎临床诊断与治疗专家共识解读(2025年)解读课件
- 制药废水处理工艺
- 《乡村振兴促进法》参考试题库80题(含答案)
- 2025年晋城职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 2024高职单招考试(语文)试题(附答案)人人文库
- 2023-2024学年江苏南京秦淮区七年级下册语文期中试卷及答案
- 博士后研究计划书
- 客户服务与沟通技巧提升考核试卷
- 【MOOC】电路基础-西北工业大学 中国大学慕课MOOC答案
评论
0/150
提交评论