不等式的性质--不等式的证明与应用(3)_第1页
不等式的性质--不等式的证明与应用(3)_第2页
不等式的性质--不等式的证明与应用(3)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学(上册)教案 第二章 不等式(第8课时) 保康县职业高级中学:洪培福课 题:2.1不等式的性质-不等式的证明与应用(3)教学目的:1掌握分析法证明不等式;2理解分析法实质执果索因;3提高证明不等式证法灵活性教学重点:分析法教学难点:分析法实质的理解授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1比较法之一(作差法)步骤:作差变形判断与0的关系结论比较法之二(作商法)步骤:作商变形判断与1的关系结论8综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法用综合法证明不等式

2、的逻辑关系是:综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法二、讲解新课:1分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法2用分析法证明不等式的逻辑关系是:3分析法的思维特点是:执果索因4分析法的书写格式: 要证明命题B为真, 只需要证明命题为真,从而有 这只需要证明命题为真,从而又有 这只需要证明命题A为真而已知A为真,故命题B必为真三、讲解范例:例1 求证证明: 综合法: 为了证

3、明 21 < 25只需证明: 展开得: 即: 因为成立 说明:分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有这只需要证明命题B2为真,从而又有这只需要证明命题A为真而已知A为真,故B必真例2已知:,求证:.证一:(分析法)要证故只需证即证:即:(显然)原式成立证二:(综合法)展开得:,. 说明:对于较复杂的不等式,直接运用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的四、课堂练习:已知,求证:分

4、析一:用分析法证法一:(1)当时,显然成立(2)当时,欲证原不等式成立,只需证(ac+bd)2(a2+b2)(c2+d2)即证a2c2+2abcd+b2d2a2c2+a2d2+b2c2+b2d2即证2abcdb2c2+a2d2即证0(bc-ad)2因为a,b,c,dR,所以上式恒成立,综合(1)、(2)可知:原不等式成立分析二:用综合法证法二:(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=(a2c2+2abcd+b2d2)+(b2c2-2abcd+a2d2)=(ac+bd)2+(bc-ad)2(ac+bd)2|ac+bd|ac+bd故命题得证分析三:用比较法证法三:(a2+b2)(c2+d2)-(ac+bd)2=(bc-ad)20,(a2+b2)(c2+d2)(ac+bd)2|ac+bd|ac+bd,即五、小结 :通过本节学习,要求大家在理解分析法的逻辑关系的基础上掌握分析法证明不等式,并加深认识不等式证明方法的灵活性,能综合运用证明不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论