ch61定积分的概念ppt课件_第1页
ch61定积分的概念ppt课件_第2页
ch61定积分的概念ppt课件_第3页
ch61定积分的概念ppt课件_第4页
ch61定积分的概念ppt课件_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六章积分学积分学不定积分不定积分定积分定积分定积分 第一节一、定积分问题举例一、定积分问题举例二、二、 定积分的定义定积分的定义三、三、 定积分的性质定积分的性质定积分的概念及性质 第五章 一、定积分问题举例一、定积分问题举例1. 曲边梯形的面积曲边梯形的面积设曲边梯形是由连续曲线)0)()(xfxfy,轴及x以及两直线bxax,所围成 , 求其面积 A .矩形面积ahhaahb梯形面积)(2bahabxyo? A)(xfy abxyoabxyo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形面积和越接近曲边梯形面积(四个小矩形)(九个小矩形)1xix1ixxayo解决步骤解决步骤 :1

2、) 大化小大化小.在区间 a , b 中任意插入 n 1 个分点bxxxxxann1210,1iiixx用直线ixx 将曲边梯形分成 n 个小曲边梯形;2) 常代变常代变.在第i 个窄曲边梯形上任取作以,1iixx为底 ,)(if为高的小矩形, 并以此小梯形面积近似代替相应窄曲边梯形面积,iA得)()(1iiiiiixxxxfA),2, 1,nii3) 近似和近似和.niiAA1niiixf1)(4) 取极限取极限.令, max1inix则曲边梯形面积niiAA10limniiixf10)(limxabyo1xix1ixiabxo二、定积分定义二、定积分定义,)(上定义在设函数baxf的若对,

3、ba任一种分法,210bxxxxan,1iiixxx令任取, ,1iiixxi时只要0max1inixiniixf1)(总趋于确定的极限 I , 则称此极限 I 为函数)(xf在区间,ba上的定积分,1xix1ixbaxxfd)(即baxxfd)(iniixf10)(lim此时称 f ( x ) 在 a , b 上可积 .记作baxxfd)(iniixf10)(lim积分上限积分下限被积函数被积表达式积分变量积分和称为积分区间,ba定积分仅与被积函数及积分区间有关 , 而与积分变量用什么字母表示无关 , 即baxxfd)(battfd)(bauufd)(定理定理1.上连续在函数,)(baxf.

4、,)(可积在baxf定理定理2.,)(上有界在函数baxf且只有有限个间断点 可积的充分条件可积的充分条件:.,)(可积在baxf定积分的几何意义定积分的几何意义:Axxfxfbad)(,0)(曲边梯形面积baxxfxfd)(,0)(曲边梯形面积的负值abyx1A2A3A4A5A54321d)(AAAAAxxfba各部分面积的代数和Ao1 xyni例例1. 利用定义计算定积分利用定义计算定积分.d102xx解解: 将 0,1 n 等分, 分点为niix ), 1 ,0(ninix1,nii取),2, 1(ni2xy iiiixxf2)(则32nio1 xyniiinixf)(1niin1231

5、) 12)(1(6113nnnn)12)(11 (61nniniixxx120102limdnlim31)12)(11 (61nn2xy 注注 利用利用,133) 1(233nnnn得133) 1(233nnnn1) 1( 3) 1( 3) 1(233nnnn1131312233两端分别相加, 得1) 1(3n)21 ( 3nn即nnn3323nii12332) 1( nnnnii1261) 12)(1(nnn)21 ( 3222n三、定积分的性质三、定积分的性质(设所列定积分都存在)abbaxxfxxfd)(d)(. 10d)(aaxxfbaxd. 2xxfkxxfkbabad)(d)(.

6、3( k 为常数)bababaxxgxxfxxgxfd)(d)(d)()(. 4证证:iiinixgf)()(lim10左端iiniiinixgxf)(lim)(lim1010= 右端abbccabaxxfxxfxxfd)(d)(d)(. 5证证: 当当bca时,因)(xf在,ba上可积 ,所以在分割区间时, 可以永远取 c 为分点 , 于是,)(baiixf,)(caiixf,)(bciixfabc0令baxxfd)(caxxfd)(bcxxfd)(abc当 a , b , c 的相对位置任意时, 例如,cba则有caxxfd)(baxxfd)(cbxxfd)(caxxfd)(baxxfd)

7、(cbxxfd)(caxxfd)(bcxxfd)(6. 若在若在 a , b 上上0)(1iinixf那么.0d)(xxfba证证:,0)(xfbaxxfd)(0)(lim10iinixf推论推论1. 若在若在 a , b 上上, )()(xgxf那么xxfbad)(xxgbad)(推论推论2.xxfbad)(xxfbad)(证证:)( xf)(xf)(xf)(ba xxfxxfxxfbababad)(d)(d)(即xxfxxfbabad)(d)(7. 设设, )(min, )(max,xfmxfMbaba那么)(d)()(abMxxfabmba)(ba 例例3.3.不计算定积分的值,比较不计

8、算定积分的值,比较21100 xxe dxe dx与的大小.解:由于在积分区间解:由于在积分区间0,10,1上,上,2,xx所以在0,1上,2,xxee又定积分的性质6的推论1可知21100.xxe dxe dx8. 积分中值定理积分中值定理, ,)(baCxf若则至少存在一点, ,ba使)(d)(abfxxfba证证: :,)(Mmbaxf别为上的最小值与最大值分在设则由性质7 可得Mxxfabmbad)(1根据闭区间上连续函数介值定理,上至少存在一在,ba, ,ba点使xxfabfbad)(1)(因此定理成立.oxbay)(xfy 阐明阐明:.都成立或baba 可把)(d)(fabxxfba.,)(上的平均值在理解为baxf故它是有限个数的平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论