椭园的几何意义_第1页
椭园的几何意义_第2页
椭园的几何意义_第3页
椭园的几何意义_第4页
椭园的几何意义_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.2 2.2.2 椭圆的简单几何性质椭圆的简单几何性质( (三三) )1-直线与椭圆的位置关系直线与椭圆的位置关系2-弦长公式弦长公式回想:直线与圆的位置关系回想:直线与圆的位置关系1.位置关系:相交、相切、相离位置关系:相交、相切、相离2.判别方法判别方法(代数法代数法) 联立直线与椭圆的方程联立直线与椭圆的方程 消元得到二元一次方程组消元得到二元一次方程组 (1)0直线与圆相交直线与圆相交有两个公共点;有两个公共点; (2)=0 直线与圆相切直线与圆相切有且只有一个公共点;有且只有一个公共点; (3)0 直线与圆相离直线与圆相离无公共点无公共点通法通法直线与椭圆的位置关系直线与椭圆的

2、位置关系种类种类: 相离相离(没有交点没有交点)相切相切(一个交点一个交点)相交相交(二个交点二个交点)相离相离(没有交点没有交点)相切相切(一个交点一个交点)相交相交(二个交点二个交点) 直线与椭圆的位置关系的判定直线与椭圆的位置关系的判定mx2+nx+p=0m 0)Ax+By+C=0由方程组:由方程组:0相交相交方程组有两解方程组有两解两个交点两个交点代数方法代数方法= n2-4mp12222 byax1.位置关系:相交、相切、相离位置关系:相交、相切、相离2.判别方法判别方法(代数法代数法) 联立直线与椭圆的方程联立直线与椭圆的方程 消元得到二元一次方程组消元得到二元一次方程组 (1)0

3、直线与椭圆相交直线与椭圆相交有两个公共点;有两个公共点; (2)=0 直线与椭圆相切直线与椭圆相切有且只有一个公共点;有且只有一个公共点; (3)k-3366-k0由于由于所以,方程有两个根,所以,方程有两个根,那么,相交所得的弦的弦长是多少?那么,相交所得的弦的弦长是多少?则原方程组有两组解则原方程组有两组解.- (1)由韦达定理由韦达定理51542121xxxx222212121212126()()2()2 ()425ABxxyyxxxxx x 1直线与椭圆的位置关系直线与椭圆的位置关系设直线与椭圆交于设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线两点,直线P1P2的斜率

4、为的斜率为k弦长公式:弦长公式:221|1|1|ABABABkxxyyk2弦长公式弦长公式例:已知斜率为例:已知斜率为1的直线的直线L过椭圆过椭圆 的右焦点,的右焦点,交椭圆于交椭圆于A,B两点,求弦两点,求弦AB之长之长2弦长公式弦长公式解:解:3.若若P(x,y)满足满足 ,求求 的的最大值、最小值最大值、最小值.221(0)4xyy34yx 例例 :已知椭圆:已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.解:解:韦达定理韦达定理斜率斜率韦达定理法:利用韦达定理及中点坐标公式来构造韦达定理法:利用韦达定理及中点

5、坐标公式来构造弦中点问题弦中点问题例例 :已知椭圆:已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.点差法:利用端点在曲线上,坐标满足方程,作差构造点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率出中点坐标和斜率点点作差作差弦中点问题弦中点问题例:已知椭圆例:已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.所以所以 x2+4y2=(4-x)2+4(2-y)2,整理得,整理得x+2y-4=0从而从而A ,B在直线在直线x+2

6、y-4=0上上而过而过A,B两点的直线有且只有一条两点的直线有且只有一条解后反思:中点弦问题求解关键在于充分利用解后反思:中点弦问题求解关键在于充分利用“中点这一中点这一 条件,灵活运用中点坐标公式及韦达定理,条件,灵活运用中点坐标公式及韦达定理,弦中点问题弦中点问题练习:练习:1、如果椭圆被、如果椭圆被 的弦被的弦被4,2平分,那平分,那 么这弦所在直线方程为(么这弦所在直线方程为( )A、x-2y=0 B、x+2y- 4=0 C、2x+3y-12=0 D、x+2y-8=02、y=kx+1与椭圆与椭圆 恰有公共恰有公共点,则点,则m的范围(的范围( ) A、(、(0,1) B、(、(0,5

7、) C、 1,5)(5,+ ) D、(1,+ ) 3、过椭圆、过椭圆 x2+2y2=4 的左焦点作倾斜的左焦点作倾斜角为角为300的直线,的直线, 则弦长则弦长 |AB|= _ , DC193622yx1522myx1651、直线与椭圆的三种位置关系及判断方法;、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:、弦长的计算方法:弦长公式:弦长公式: |AB|= = (适用于任何曲线)(适用于任何曲线) 21212411yyyyk )(21221241xxxxk )(小小 结结3、弦中点问题的两种处理方法:、弦中点问题的两种处理方法: (1联立方程组,消去一个未知数,利用韦达定理;联立方程组,消去一个未知数,利用韦达定理; (2设两端点坐标,代入曲线方程相减可求出弦的斜率。设两端点坐标,代入曲线方程相减可求出弦的斜率。 1、直线与椭圆的三种位置关系及判断方法;、直线与椭圆的三种位置关系及判断方法;2、弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论