53_平行线的性质课件1_第1页
53_平行线的性质课件1_第2页
53_平行线的性质课件1_第3页
53_平行线的性质课件1_第4页
53_平行线的性质课件1_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 世界著名的意大世界著名的意大利比萨斜塔,建于公利比萨斜塔,建于公元元11731173年,为层圆年,为层圆柱形建筑,全部用白柱形建筑,全部用白色大理石砌成塔高色大理石砌成塔高5454. .5 5米米它与地面所它与地面所成的较大的成的较大的角是多少度角是多少度1235.3 5.3 平行线的性质平行线的性质5.3.1 5.3.1 平行线的性质平行线的性质复习回顾复习回顾两直线平两直线平行行 平行线的判定方法是什么?平行线的判定方法是什么?反过来反过来, ,如果两条直线平行如果两条直线平行, ,同位角同位角、内错角内错角、同旁内角各有什么关系呢同旁内角各有什么关系呢? ? 是不是任意一条直线去截平行

2、线是不是任意一条直线去截平行线a a、b b 所得的同位角都相等呢?所得的同位角都相等呢?两直线平行,同位角相等两直线平行,同位角相等. 两条平行线被第三条直线所截,两条平行线被第三条直线所截, 同位角相等同位角相等. .ab,简写为:简写为:符号语言符号语言:b12ac 如图:已知如图:已知a/b,a/b,那么那么 2 2与与 3 3相等吗?相等吗?为什么为什么? ?解解ab(已知已知), 1=2(两直线平行两直线平行, 同位角相等同位角相等). 又又 1=3(对顶角相等对顶角相等), 2=3(等量代换等量代换).b12ac3两直线平行,内错角相等两直线平行,内错角相等. . 两条平行线被第

3、三条直线所截,两条平行线被第三条直线所截, 内错角相等内错角相等. .ab,符号语言符号语言:简写为:简写为:b12ac3解:解: a/b (已知)(已知),如图如图, ,已知已知a/ba/b, ,那么那么 2 2与与 4 4有有什么关系呢?什么关系呢?为什么为什么? ?b12ac4 1= 2(两直线平行,(两直线平行, 同位角相等)同位角相等). 1+ 4=180(邻补角定义)(邻补角定义), 2+ 4=180(等量代换)(等量代换).两直线平行,同旁内角互补两直线平行,同旁内角互补. . 两条平行线被第三条直线所截,两条平行线被第三条直线所截, 同旁内角互补同旁内角互补. . 2+ 4=1

4、80.ab,符号语言符号语言:简写为:简写为:b12ac4 例例 如图,已知直线如图,已知直线ab,1 = 500, 求求2的度数的度数.abc12 2= 500 (等量代换等量代换).解:解: ab(已知已知), 1= 2(两直线平行两直线平行,内错角相等内错角相等).又又 1 = 500 (已知已知),变式:已知条件不变,求变式:已知条件不变,求33,44的度数?的度数? 34变式变式2:2:已知已知3 =43 =4,1=471=47, ,求求22的度数?的度数? 2= 470( )解:解: ab( )又又 1 = 470 ( )c1234abd 如图在四边形如图在四边形ABCD中中,已知

5、已知ABCD,B = 600.求求C的度数的度数;由已知条件能否求得由已知条件能否求得A的度数的度数?ABCD解解: ABCD(已知已知), B + C= 1800(两直线平行两直线平行,同旁内角互补同旁内角互补).又又 B = 600 (已知已知),C = 1200 (等式的性质等式的性质).A 如图,在汶川大地震当中,一辆抗震救灾汽如图,在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行同,也就是拐弯前后的两条路互相平行. .第一次第一次拐的角拐的角BB等于等于1421420 0,第二次拐的角,

6、第二次拐的角CC是多少是多少度?为什么?度?为什么?1420BCAD?解:解:ABCD (已知)(已知),C=B(两直线平行,两直线平行,内错角相等内错角相等).又又B=142 (已知)(已知),C=B=142 (等量代换)(等量代换).DCEFAAGG12 小明在纸上画了一个角小明在纸上画了一个角AA,准备用量角器测量,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长部分,如果不能延长DCDC、FEFE的话,你能帮他设计出多的话,你能帮他设计出多少种方法可以测出少种方法可以测出AA的度数?的度数?1它与地面所它与地

7、面所成的较大的成的较大的角是多少度角是多少度23线的关系线的关系角的关系角的关系性质性质5.3.2 5.3.2 命题、定理命题、定理下列语句在表述形式上,哪些是对事情作了判断?哪下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?些没有对事情作出判断?1 1、对顶角相等;、对顶角相等;2 2、画一个角等于已知角;、画一个角等于已知角;3 3、两直线平行,同位角相等;、两直线平行,同位角相等;4 4、a a、b b两条直线平行吗?两条直线平行吗?5 5、温柔的李明明;、温柔的李明明;6 6、玫瑰花是动物;、玫瑰花是动物;7 7、若、若a a2 24 4,求,求a a的值;的值;8

8、 8、若、若a a2 2b b2 2,则,则a ab b。否否是是否否否否是是否否是是是是对事情作了判断的语句是否正确?对事情作了判断的语句是否正确?2、如果一个句子没有对某一件事情作出任何、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。判断,那么它就不是命题。如:画线段如:画线段AB=CDAB=CD。判断一件事情的语句叫做判断一件事情的语句叫做命题命题。注意:注意:1、只要对一件事情作出了只要对一件事情作出了判断判断,不管正确与否,不管正确与否,都是都是命题命题。如:相等的角是对顶角。如:相等的角是对顶角。命题是由命题是由题设题设(或条件或条件)和和结论结论两部分组成。两部分组

9、成。题题设设是已知事项,是已知事项,结论结论是由已知事项推出的事项是由已知事项推出的事项。 两直线平行,两直线平行, 同位角相等。同位角相等。题设(条件)题设(条件)结论结论“如果如果,那么,那么”“如果如果”后接后接的部分是的部分是题设题设,“那么那么”后接后接的的部分是部分是结论结论。注意:注意:添加添加“如果如果”、“那么那么”后,后,命题的意命题的意义不能改变义不能改变,改写的,改写的句子要完整句子要完整,语句要通顺语句要通顺,使命题的题设和结论更明朗,易于分辨,改写使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。过程中,要适当增加词语,切不可生搬硬套。

10、指出下列各命题的指出下列各命题的题设题设和和结论结论,并改写并改写成成“如果如果那么那么”的形式。的形式。 1 1、对顶角相等;、对顶角相等; 2 2、内错角相等;、内错角相等; 3 3、两平线被第三直线所截,同位角相等;、两平线被第三直线所截,同位角相等; 4 4、3 32 2; 5 5、同平行于一直线的两直线平行;、同平行于一直线的两直线平行; 6 6、直角三角形的两个锐角互余;、直角三角形的两个锐角互余; 7 7、等角的补角相等;、等角的补角相等; 8 8、正数与负数的和为、正数与负数的和为0 0。有些命题如果题设成立,那么结论一定成立;有些命题如果题设成立,那么结论一定成立;而有些命题

11、题设成立时,结论不一定成立。而有些命题题设成立时,结论不一定成立。正确的命题叫正确的命题叫真命题真命题,错误的命题叫,错误的命题叫假命题假命题。如命题:如命题:“如果两个角互补,那么它们是邻补如果两个角互补,那么它们是邻补角角”就是一个就是一个错误错误的命题。的命题。如命题:如命题:“如果一个数能被如果一个数能被4整除,那么它也能整除,那么它也能被被2整除整除”就是一个就是一个正确正确的命题。的命题。确定一个命题真假的方法:确定一个命题真假的方法:利用已有的知识,通过利用已有的知识,通过观察观察、验证验证、推理推理、举举反例反例等方法。等方法。下列句子哪些是命题?是命题的,指出下列句子哪些是命

12、题?是命题的,指出是真命题还是假命题?是真命题还是假命题? 1 1、猪有四只脚;、猪有四只脚; 2 2、内错角相等;、内错角相等; 3 3、画一条直线;、画一条直线; 4 4、四边形是正方形;、四边形是正方形; 5 5、你的作业做完了吗?、你的作业做完了吗? 6 6、同位角相等,两直线平行;、同位角相等,两直线平行; 7 7、对顶角相等;、对顶角相等; 8 8、同垂直于一直线的两直线平行;、同垂直于一直线的两直线平行; 9 9、过点、过点P P画线段画线段MNMN的垂线;的垂线; 10 10、x x2 2是是真命题真命题否否是是假假命题命题是是假假命题命题否否是是真真命题命题是是真真命题命题是

13、是假假命题命题否否否否1 1、数学中有些命题的正确性是人们在、数学中有些命题的正确性是人们在长期实践长期实践中总结中总结出来的,并把它们出来的,并把它们作为判断其他命题真作为判断其他命题真假的原始依据假的原始依据,这样的真命题叫做,这样的真命题叫做公理公理。2 2、有些命题可以从公理或其他真命题出发,用、有些命题可以从公理或其他真命题出发,用逻辑推理逻辑推理的方法判断它们是正确的,并且可以的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据进一步作为判断其他命题真假的依据,这样的,这样的真命题叫做真命题叫做定理定理。公理公理和和定理定理都可作为判断其他命题真假的都可作为判断其他命题

14、真假的依据依据。公理举例:公理举例:经过两点有且只有一条直线。经过两点有且只有一条直线。2、线段公理:、线段公理:两点的所有连线中,线段最短。两点的所有连线中,线段最短。4、平行线判定公理:、平行线判定公理:同位角相等,两直线平行。同位角相等,两直线平行。5、平行线性质公理:、平行线性质公理:两直线平行,同位角相等。两直线平行,同位角相等。1、直线公理:、直线公理:3、平行公理:、平行公理:经过直线外一点,有且只有一条经过直线外一点,有且只有一条直线与已知直线平行。直线与已知直线平行。同角或等角的补角相等。同角或等角的补角相等。2、余角的性质:、余角的性质:同角或等角的余角相等。同角或等角的余

15、角相等。4、垂线的性质:、垂线的性质:过一点有且只有一条直线过一点有且只有一条直线与已知直线垂直;与已知直线垂直;5、平行公理的推论:、平行公理的推论:如果两条直线都和第三条如果两条直线都和第三条直线平行,那么这两条直直线平行,那么这两条直线也互相平行。线也互相平行。1、补角的性质:、补角的性质:3、对顶角的性质:、对顶角的性质:对顶角相等。对顶角相等。垂线段最短。垂线段最短。定理举例:定理举例:内错角相等,两直线平行。内错角相等,两直线平行。同旁内角互补,两直线平行。同旁内角互补,两直线平行。6、平行线的判定定理:、平行线的判定定理:7、平行线的性质定理:、平行线的性质定理:两直线平行,内错

16、角相等。两直线平行,内错角相等。两直线平行,同旁内角互补。两直线平行,同旁内角互补。定理举例:定理举例:课堂小结课堂小结1 1、命题:判断一件事情的语句叫、命题:判断一件事情的语句叫命题命题。2 2、公理:人们长期以来在实践中总结出来的,并作为判断其他、公理:人们长期以来在实践中总结出来的,并作为判断其他命题真假的根据的命题,叫做命题真假的根据的命题,叫做公理公理。3 3、定理:经过推理论证为正确的命题叫、定理:经过推理论证为正确的命题叫定理定理。也可作为继续推。也可作为继续推理的依据。理的依据。4 4、判断一个命题是真命题,可以从公理或定理出发,用、判断一个命题是真命题,可以从公理或定理出发,用逻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论