版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、误差理论与数据处理测验题 试题及答案作者:日期:误差理论与数据处理考试题(卷)、填空题(每空1分,共计25分)1.误差的表示方法有 绝对误差 、 相对误差 、 引用误差 。2 随机误差的大小,可用测量值的标准差来衡量,其值越小,测量值越 集中,测量精密度越3. 按有效数字舍入规则,将下列各数保留三位有效数字:6.3548 6.35 ; 8.8750 8.88 ; 7.6451 7.65 ; 5.4450 5.44 ; 547300 5.47 K)5。4. 系统误差是在同一条件下,多次测量同一量值时,误差的绝对值和符号 保持不变,或者在条件改变时,误差 按一定规律变化。系统误差产生的原因有(1)
2、测量装置方面的因素、(2)环境方面的因素、(3)测量方法的因素 、(4)测量人员方面的因素 。5. 误差分配的步骤是:按等作用原则分配误差:按等可能性调整误差:验算调整后的总误差。6 .微小误差的取舍准则是被舍去的误差必须小于或等于测量结果总标准差的1/31/10。7.测量的不确定度与自由度有密切关系,自由度愈大,不确定度愈 小,测量结果的可信赖程度愈8 某一单次测量列的极限误差Gm =_0.06mm,若置信系数为3,则该次测量的标准差一:;-0.02mm 。9.对某一几何量进行了两组不等精度测量,已知:x1 =0.05mm,二x = 0.04mm,则测量结果中各组的权之比为16:25 。10
3、.对某次测量来说,其算术平均值为 两位有效数字,则测量结果可表示为15.1253,合成标准不确定度为15.125(15)。0.015,若要求不确定度保留、是非题(每小题 1分,共计10 分)1标准量具不存在误差。(x )2.在测量结果中,小数点的位数越多测量精度越高。(x )3.测量结果的最佳估计值常用算术平均值表示。(V)4.极限误差就是指在测量中,所有的测量列中的任-一误差值都不会超过此极限误差。(x )5.系统误差可以通过增加测量次数而减小。(x )6.在测量次数很小的情况下,可以用3二准则来进行粗大误差的判别。(x )7.随机误差的合成方法是方和根。(V)8.测量不确定度是无符号的参数
4、用标准差或标准差的倍数, 或置信区间的半宽表示。(V )9.用不同的计算方法得到的标准不确定度A类评定的自由度相同。(x )10. 以标准差表示的不确定度称为展伸不确定度三、简答题(每题4分,共计20分)1误差计算:(1)检定2.5级(即引用误差为2.5%)、量程为100V的电压表,发现在50V刻度点的示值误差为 3V为 最大误差,问该电压表是否合格。解:由引用误差的定义,引用误差=示值误差/测量范围上限(量程),贝U个人收集整理,勿做商业用途 3V100V 100% =3% 25%因此,该电压表不合格。(2)用两种方法测量 J =50mm, L2 =80mm,实际测得的值分别为 50.004
5、mm, 80.006mm。试评定 两种测量方法精度的高低。解:第一种方法测量的相对误差:(50.004 50)100% =0.008%50第二种方法测量的相对误差:(80.006 -80)100% =0.0075%80第二种方法测量的相对误差小,因此其测量精度高。2 .试述正态分布的随机误差所具有的特点。答:服从正态分布的随机误差具有以下四个特点:(1) 单峰性:小误差出现的概率比大误差出现的概率大;(2) 对称性:正误差出现的概率与负误差出现的概率相等;(3) 抵偿性:随测量次数增加,算术平均值趋于零;(4) 有界性:误差的分布具有大致的范围。3 试述等精度测量时标准差的不同计算方法,并写出
6、计算公式。答:(1)贝塞尔公式::二=(2)别捷尔斯公式:n=1.2533 工送 Vii叫n(n -1)(3)极差法:;- mdn(4)最大误差法: = 5i/kn = Vj/kn"i max / nj max / n4.用某仪器测量工件尺寸,已知该仪器的标准差为-0.001mm,若测量服从正态分布,要求测量的允许极限误差为 -0.0015mm,置信概率P = 0.95,则应至少测量多少次?正态分布积分表如下。t0.050.500.951.96电t)0.01990.19150.32890.475解:置信概率 P =0.95,由于P =2::(t),则::(t) =0.475,查表得t
7、 =1.96lim x二 _t 二 1.96 0.001 二 _0.0015、n、nn> 1.9620.001 0.0015-1.707因此,取n = 2。5 测量不确定度与误差的区别是什么?答:(1)测量不确定度是一个无正负的参数,用标准差或标准差的倍数表示。误差则可正可负,其值 为测量结果减去被测量的真值。(2) 测量不确定度表示测量值的分散性。误差表明测量结果偏离真值的大小及方向。(3) 测量不确定度受人们对被测量、影响量及测量过程的认识程度影响。误差是客观存在的,不以人 的认识程度而改变。(4) 测量不确定度可由人们根据实验、资料、经验等信息进行评定,可以定量确定。由于真值未知,
8、 误差往往不能准确得,只有用约定真值代替真值时,才可以得到误差的估计值。(5) 评定不确定度各分量时,一般不必区分其性质。误差按性质分为随机误差和系统误差。(6) 不能用不确定度对测量结果进行修正,对已修正的测量结果进行不确定度评定时应考虑修正不完 善而引入的不确定度。四、计算题(共计 45分)1.对某一温度值 T等精度测量15次,测得值如下(单位:C) : 20.53, 20.52, 20.50, 20.52, 20.53 ,20.53, 20.50, 20.49, 20.49, 20.51 , 20.53, 20.52, 20.49, 20.40, 20.50。已知温度计的系统误差为 -0
9、.05 C, 除此以外不再含有其它的系统误差, 试判断该测量列是否含有粗大误差, 并求温度的测量结果及其标准差。(可能用到的数据 g0(15,0.05) =2.41 , r0(15,0.05) = 0.525 ) (15 分)解:(1)判别粗大误差:-1 15算术平均值:残余误差vi(1 分)T 一、T =20.504;Cn i吕-T :分别为(C) : 0.026, 0.016, -0.004, 0.016, 0.026, 0.026, -0.004, -0.014,-0.014,0.006, 0.026, 0.016, -0.014, -0.104, -0.004。(1 分)测量列单次测量
10、的标准差:=0.033 c(1 分)根据 3准则:3貯=30.033 = 0.099,第14测得值的残余误差 v14 =0.105 a 0.099,则第14个数据20.40为粗大误差,应剔除。将剔除后的数据继续进行粗大误差的判断,未发现再有粗大误差。(2)计算剔除粗大误差后的算术平均值的极限误差:计算剔除后的算术平均值:一二丄20.51C14 i A对测量结果进行系统误差的修正:V-20.510.05 =20.56“C算术平均值的标准差:算术平均值的极限误差:单次测量标准差:匚J V2i mn -114' Vi2心一 0.016 C14一1CT一 二 二T n ; 140.016 =0
11、.0043:C(1 分)(1 分)(1 分)(2 分)(1 分)(2 分)t=3, P=99.73% ,个人收集整理,勿做商业用途:訂imT = t“_,T = 3 0.0043= 0.013C(2分)(3)测量结果:T 二T _、.limT 二(20.56 _0.013);C(2分)2.为求长方体的体积 V,直接测量其各边长为 a = 161.6mm, b = 44.5mm , c = 11.2mm,已知测量的系统误差为=a =1.2mm, Lb = -0.8mm, =c = 0.5mm,测量的极限误差为七:士0.8mm,0.5mm,: 0.5mm。试求长方体的体积及体积的极限误差。解:长方
12、体的体积直接测量结果:V0=abc=161.6 44.5 11.2 =80541.44 mm3(2分)由于;:V2=be = 44.5 11.2 = 498.4mm则,长方体体积的系统误差(3分)因此,长方体的体积(2分) 极限误差为.:b;:V.:c2二 ac =161.6 11.2 = 1809.92mm2=ab =161.6 44.5 =7191.2mm汎-V:VabcL、L、a : b : c= 498.4 1.2 1809.92 (-0.8) 7191.2 0.5 = 2745.744mm3V =V° - V =80541.44 -2745.744 = 77795.696m
13、m3V九2 C2=-,498.42 0.82 1809.922 0.52 7191.22 0.52 二-3729.11mm3(3 分)_3729.11mm3 。3.测量某电路电阻R两端的电压U, = (16.50 _0.05)V,R- r 的电路电流I。因此,长方体的体积是 77795.696mm3,体积的极限误差是由公式I = U R算出电路电流I 。若测得-(4.26 _0.02)门,相关系数ur二0.36。试求标准不确定度表示解:不考虑误差下的电路电流I =U; R =165 4.26 =3.87 A(2分)电流的标准不确定度Ui2斤g爲;R二U;- R(5分)不确定度报告:I =(3.
14、87 _ 0.025)Ay1 = x14.已知测量方程为:y2 =X2IyX1 X21I R=0.025A-叮打收“1_U2R2R UR RR2(3 分),而 y1,y2,y3 的测量结果分别为 l 5.26mm , l2 =4.94mm,l3 =10.14mm,试求X1与X2的最小二乘估计及其精度估计。(10分)解:(1)求最小二乘估计、 I"建立方程组,y2y3=X1=x2,写为矩阵的形式:L=A>?,即=X1 x2i Jl21J(3 分)i 4.94匚 10.145.264.9410.141 215.264.9410.141 2 -13 L1 25.264.94i10.1
15、41111 15.725.243 *4.76 _一 *.92 一(2x1与x2的最小二乘估计值分别为捲=5.24mm , x2= 4.92mm 。分)(2)计算精度a.测量值的精度:= h -片= 0.02:'2 = l2 'X2,得'- 2 = 0.02、3 “3 -(X1 X2)、3 = -O.。2则,二口2 2 2=02二 O.02.02)=0.035mm3 -2(2 分)b .估计值的精度为: 正规方程为iai1ai2li22ai2aiiai2ai1l iai2l 21105.261005.2602014.9401004.9431110.1411110.1410.14s22115.40
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全应急响应-第3篇-洞察分析
- 网络学习社区建设-洞察分析
- 数字艺术教育创新-洞察分析
- 水陆联运技术集成-洞察分析
- 药物作用靶点验证技术-洞察分析
- 营养素与环境关系研究-洞察分析
- 网络艺术市场分析-洞察分析
- 新能源车辆在物流业的应用-洞察分析
- 从社交平台到市场爆款的地铁文创产品设计秘诀
- 办公空间绿色改造的实践与思考
- 2024届高考专题复习:诗歌鉴赏之爱情诗 课件(共30张PPT)
- GB/T 10000-2023中国成年人人体尺寸
- 夫妻房产过户给子女协议书
- 出境竹木草制品公司原辅料采购验收制度
- 2023年临床医学(军队文职)题库(共五套)含答案
- 关于学校学生意外死亡的情况报告
- 2023-2024学年江西省小学语文六年级期末模考考试题附参考答案和详细解析
- 山东省菏泽市高职单招2023年综合素质自考测试卷(含答案)
- 中国儿童注意缺陷多动障碍(ADHD)防治指南
- 强力皮带运行危险点分析及预控措施
- 基于STM32的可遥控智能跟随小车的设计与实现-设计应用
评论
0/150
提交评论