




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等代数集合映射高等代数课件高等代数课件第六章第六章 线性空间线性空间6.1 6.1 集合集合 映射映射代数与几何教研室高等代数集合映射把一些事物汇集到一起组成的一个整体就叫做把一些事物汇集到一起组成的一个整体就叫做集合集合;常用大写字母常用大写字母A A、B B、C C 等表示集合;等表示集合;当当a a是集合是集合A A的元素时,就说的元素时,就说a a 属于属于A A,记,记作:作: ; aA 当当a a不是集合不是集合A A的元素时,就说的元素时,就说a a不属于不属于A A,记作:,记作: aA 组成集合的这些事物称为集合的组成集合的这些事物称为集合的元素元素 用小写字母用小写字母a
2、 a、b b、c c 等表示集合的元素等表示集合的元素 高等代数集合映射 关于集合没有一个严谨的数学定义,只是有关于集合没有一个严谨的数学定义,只是有一个描述性的说明集合论的创始人是一个描述性的说明集合论的创始人是1919世纪中期世纪中期德国数学家康托尔(德国数学家康托尔(G GCantorCantor),他把集合描述),他把集合描述为:所谓集合是指我们直觉中或思维中确定的为:所谓集合是指我们直觉中或思维中确定的, ,彼彼此有明确区别的那些事物作为一个整体来考虑的结此有明确区别的那些事物作为一个整体来考虑的结果果; ;集合中的那些事物就称为集合的元素即,集集合中的那些事物就称为集合的元素即,集
3、合中的元素具有:确定性、互异性、无序性合中的元素具有:确定性、互异性、无序性. . Remark:高等代数集合映射集合的表示方法:集合的表示方法:描述法描述法:给出这个集合的元素所具有的特征性质:给出这个集合的元素所具有的特征性质.列举法列举法:把构成集合的全部元素一一列举出来:把构成集合的全部元素一一列举出来.例例122( , )4, ,Mx y xyx yR 例例2 N ,0,1,2,3,0, 2, 4, 6, 2Z 例例3210, 1,1Mx xxR Mx | x具有性质具有性质P Ma1,a2,an高等代数集合映射 如果如果B中的每一个元素都是中的每一个元素都是A中的元素,则称中的元素
4、,则称B是是A的的子集子集,记作,记作 ,(读作,(读作B包含于包含于A)BABA当且仅当当且仅当 xBxA 空集空集:不含任何元素的集合,记为:不含任何元素的集合,记为注意注意:,空集是任意集合的子集空集是任意集合的子集 如果如果A、B两集合含有完全相同的元素,则称两集合含有完全相同的元素,则称 A与与 B相等相等,记作,记作AB .AB当且仅当当且仅当 且且 ABBA高等代数集合映射交交: ; ABx xAxB 且且并并: ABx xAxB 或或显然有,显然有,;ABAAAB1、证明等式、证明等式: ()AABA 证:显然,证:显然, 又又 , ()AABA ,xAxAB 则则 ,()xA
5、AB 从而从而, ()AAAB 例题:例题: 故等式成立故等式成立高等代数集合映射2、已知、已知 , AB 证明:证明: 又因又因 , ABA ABA 又因又因 , BAB ABB ,AAB 证证:1),xA ABxBxAB 此即,此即,因此无论哪一种情况,都有因此无论哪一种情况,都有 .xB .ABB 此即,此即, (1);(2)ABAABB 2),xABxAxB 或或,AB 但是但是高等代数集合映射设设M、M 是给定的两个非空集合,如果有是给定的两个非空集合,如果有 一个对一个对应法则应法则,通过这个法则,通过这个法则对于对于M中的每一个元素中的每一个元素a,都有都有M 中一个唯一确定的元
6、素中一个唯一确定的元素a 与它对应与它对应, 则称则称 为为称称 a 为为 a 在映射在映射下的下的象象,而,而 a 称为称为a在映射在映射下的下的M到到M 的一个的一个映射映射,记作,记作 : 或或:MM MM 原象原象,记作,记作(a)a 或或:.aa 高等代数集合映射 设映射设映射 , 集合集合:MM 称之为称之为M在映射在映射下的下的象象,通常记作,通常记作 Im 集合集合M 到到M 自身的映射称为自身的映射称为M 的一个的一个变换变换 ImM 显然,显然, () ( )Ma aM 高等代数集合映射例例4判断下列判断下列M 到到M 对应法则是否为映射对应法则是否为映射 1)Ma,b,c
7、、M 1,2,3,4 :(a)1,(b)1,(c)2:(a)1,(b)2,(c)3,(c)4:(b)2,(c)4 (不是不是) (是是) (不是不是) 2)MZ,M Z,:(n)|n|, nZ :(n)|n|1,nZ (不是不是) (是是) 高等代数集合映射:(a)a0,aM 4)MP,M ,(,(P为数域)为数域)n nP :(a)aE, (E为为n级单位矩阵)级单位矩阵)aP 5)M、M 为任意两个非空集合,为任意两个非空集合,a0是是M 中的一个中的一个固定元素固定元素. (是是)(是是)6)MM Px(P为数域)为数域) :(f (x)f (x), ( ) f xP x(是是)3)M
8、,M P,(P为数域)为数域) n nP:(A)|A|,n nAP (是是) 高等代数集合映射例例5M是一个集合,定义是一个集合,定义I: I(a)a ,aM 即即 I 把把 M 上的元素映到它自身,上的元素映到它自身,I 是一个映射,是一个映射,例例6 任意一个在实数集任意一个在实数集R上的函数上的函数 yf(x) 都是实数集都是实数集R到自身的映射,即,函数可以看成是到自身的映射,即,函数可以看成是称称 I 为为 M 上的上的恒等映射恒等映射或或单位映射单位映射 映射的一个特殊情形映射的一个特殊情形 高等代数集合映射设映射设映射 , :,:MMMM 乘积乘积 定义为:定义为: (a)(a)
9、 aM 即相继施行即相继施行和和的结果,的结果, 是是 M 到到 M 的一个的一个 映射映射 对于任意映射对于任意映射 ,有,有 :MM MMII 设映射设映射:,:,:MMMMMM , 有有()(). 高等代数集合映射设映射设映射:MM 1)若)若ImM,即对于任意,即对于任意yM ,均存在,均存在(或称(或称 为为映上的映上的);); 2)若)若M中不同元素的象也不同,即中不同元素的象也不同,即 121212,()()a aMaaaa 若若则则(或(或121212,()(),a aMaaaa若若),), 则称则称是是M到到M 的一个的一个单射单射(或称(或称为为11的的);); 3)若)若
10、既是单射,又是满射,则称既是单射,又是满射,则称为为双射双射,xM ,使,使 ,则称,则称是是M到到M 的一个的一个满射满射( )yx (或称(或称为为 11对应对应) 高等代数集合映射例例7判断下列映射的性质判断下列映射的性质1)Ma,b,c、M 1,2,3:(a)1,(b)1,(c)2 (既不单射,既不单射,也不是满射也不是满射) :(a)3,(b)2,(c)12)M=Z,M Z,:(n)|n|1,nZ (是满射,但不是单射是满射,但不是单射) 3)Mn nP,M P,(,(P为数域)为数域) :(A)|A|,n nAP (是满射,但不是单射是满射,但不是单射) (双射双射)高等代数集合映
11、射4)MP,M ,n nP P为数域为数域, E为为n级单位矩阵级单位矩阵:(a)aE,aP (是单射,但不是满射是单射,但不是满射) :(a)a0,aM (既不单射,也不是满射既不单射,也不是满射) 6)MM Px,P为数域为数域:(f (x)f (x),( ) f xP x(是满射,但不是单射是满射,但不是单射) 7)M是一个集合,定义是一个集合,定义I:I(a)a,aM 8)M=Z,M 2Z,:(n)2n,nZ (双射双射) (双射双射) 5)M、M 为任意非空集合,为固定元素为任意非空集合,为固定元素 0aM 高等代数集合映射对于有限集来说,两集合之间存在对于有限集来说,两集合之间存在
12、11对应对应的充要条的充要条 件是它们所含元素的个数相同;件是它们所含元素的个数相同; 对于有限集对于有限集A及其子集及其子集B,若,若BA(即(即B为为A的真子集),则的真子集),则 A、B之间不可能存在之间不可能存在11对应;对应;但是对于无限集未必如此但是对于无限集未必如此.如例如例7中的中的8),),是是11对应,但对应,但2Z是是Z的真子集的真子集 M=Z,M 2Z,:(n)2n,nZ 高等代数集合映射:设映射:设映射:,MM 若有映射若有映射:,MM 使得使得,MMII 则称则称为为可逆映射可逆映射,为为的的逆映射逆映射, 若若为可逆映射,则为可逆映射,则1也为可逆映射,且也为可逆
13、映射,且 (1)11().aa 则则有有:MM 为可逆映射,为可逆映射,aM ,若,若( ),aa 的逆映射是由的逆映射是由唯一确定的唯一确定的记作记作1高等代数集合映射 为可逆映射的充要条件是为可逆映射的充要条件是为为11对应对应证:证:若映射若映射:MM为为11对应,则对对应,则对yM 均存在唯一的均存在唯一的xM,使,使(x)y,作对应作对应 :MM( ),( )yxxy这里( )( ( )( )( ),MxxyxIx 则即即MI ; ( )( ( )( )( ),MyyxyIy 则即即MI 为可逆映射为可逆映射 则则是一个是一个M 到到M的映射的映射, 且对且对 ,( ),xMxy 若
14、,( ),yMxx 若若y y= =有有 ( (y y) )= =高等代数集合映射11,( )( )yMyyy 对对有有即即, 1( ),( ).xyMyx 使使所以所以为满射为满射. 其次,对其次,对1212,()()x xMxx若,则,则 11111112( )( )( ( )( ( )MxIxxxx 即即为单射为单射.所以所以为为11对应对应1222()()MxIxx 反之,设反之,设 为可逆映射,则为可逆映射,则 : MM 高等代数集合映射 找一个找一个R到到R的的11对应对应,规定,规定解:解:xR :2xx则则 是是R到到R的一个映射的一个映射.若若22xy,则,则21,xyxy,
15、 是单射是单射 aR 又对,存在,存在2logaxR,使,使2log2(log )2aaa故故 是是11对应对应 是满射是满射 高等代数集合映射2、令、令1:,:,fxxg xxRx,问:,问:1)g 是不是是不是R到到R的双射?的双射?g 是不是是不是 f 的逆映射?的逆映射? 2)g是不是可逆映射?若是的话,求其逆是不是可逆映射?若是的话,求其逆 解:解:1)g是是R到自身的双射到自身的双射 ,若,若 ,则,则 ,g是单射是单射 , x yR11xyxy并且并且 ,即,即g是满射是满射 11,( )xRRgxxx 有使又又 , 11( )( ( )( )fg xf g xfxx , g不是
16、不是 f 的逆映射的逆映射RfgI事实上,事实上, 1ff1gg2)g是可逆映射是可逆映射高等代数集合映射1111()hgffg :,:fABg BChgf,令3、设映射、设映射,证明:,证明:1)如果)如果 h 是单射,那么是单射,那么 f 也是单射;也是单射;2)如果)如果 h 是满射,那么是满射,那么 g 也是满射;也是满射;3)如果)如果 f、g 都是双射,那么都是双射,那么 h 也是双射,并且也是双射,并且12()(),f af a但1112()()( ()( ()h agf ag f ag f a这与这与h是单射矛盾,是单射矛盾, f 是单射是单射1212,a aAaa且证:证:1)若)若 f 不是单射,则存在不是单射,则存在22()()gf ah a 于是有于是有高等代数集合映射( )( )( ( )ch agf ag f a,( )cCaAh ac 使2) h 是满射,是满射,即,即( )f aB, g 是满射是满射又又3) ,因为,因为 g 是满射,存在是满射,存在,使使cC bB( ).g bc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 两岸三地的宠物殭葬师试题及答案
- 特许另类投资市场与经济周期试题及答案
- 2024监理工程师考试双杠杠训练试题及答案
- 2024年5月份保健品代理合同中的临床研究数据共享限制条款
- 二零二四年份3月份涉密项目招标全流程电子化安全架构设计
- 16《麻雀》第一课时 教学设计-2024-2025学年语文四年级上册统编版
- 投资咨询工程师多选题解析试题及答案
- 2025年-上海市建筑安全员B证考试题库
- 提高电化学传感器电极灵敏度
- 山东省郯城第三中学高一体育 软式排球教学实录 新人教版
- 超星学习通四史教育答案
- 基坑工程土方开挖支护与降水监理实施细则
- 数字信号处理(课件)
- 沉淀理论课件
- 最新高三主题班会:行百里者半九十课件
- 土方回填施工记录表
- 体育调查问卷
- 公司样品标识卡
- 英语人教新起点(一起)四年级下册-Unit 3 Lesson 2 Travel plans教学设计
- SONYα300α350使用手册
- 海外专家部分项目简介
评论
0/150
提交评论