下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、在数学教学中怎样帮助学生理解概念界首市大黄中心校于庄小学 李俊亭内容摘要:在数学学习活动中,学生从生动的直观到抽象的思维,形成一系列数学概念,这些数学概念的真理性又返回数学实践中接受检验。在这个过程中,数学概念经过了不断的发展与变化,正是这种概念的发展与变化,使学生的认知不断地实现“同化”与“顺应”,认知结构不断重组、优化,学生的思维得到进步和发展。在数学教学中,教师要正确把握概念表现出的不同方面,充分展现概念的形成过程,从而帮助学生真正地理解概念。关键词:自主建构 全面认识 逐步抽象 形象理解概念是人们对事物本质的认识,是逻辑思维的基本单元和形式。人类对外部世界的正确认识,是在概念的不断形成
2、、发展与完善中,在旧的概念向新的概念不断重组、转化和更新中实现的。所以,概念的变化与发展,反映了人类认识世界的进步和发展。在数学学习活动中,学生从生动的直观到抽象的思维,形成一系列数学概念,这些数学概念的真理性又返回数学实践中接受检验。在这个过程中,数学概念经过了不断的发展与变化,正是这种概念的发展与变化,使学生的认知不断地实现“同化”与“顺应”,认知结构不断重组、优化,学生的思维得到进步和发展。在数学教学中,教师要正确把握概念表现出的不同方面,充分展现概念的形成过程,从而帮助学生真正地理解概念。一、动手操作中层现概念形成过程,帮助学生自主建构概念。学生数学学习的过程是一个建立在经验基础上的主
3、动建构的过程,而且小学生的思维处在具体运演阶段,其对于概念的理解是建立在直观形象的基础之上的,所以在数学概念教学中,教师必须给学生充分动手操作的机会,在动手操作中展现概念的形成过程,让学生亲身经历数学概念形成过程中形象而生动的性质,充分展现概念发生、发展、形成的过程;让学生充分经历“个性化”的定义过程,以便使学生对概念的自主建构和真正理解成为可能。例如长方体的长、宽、高的概念的形成过程。首先,学生动手操作,利用小棒和橡皮泥制作一个长方体,其棱(小棒)和顶点(橡皮泥)一目了然。其次,引导学生思考:如果我们拿掉其中的一根小棒,还能看出这个长方体的大小吗?学生拿掉其中一根小棒后发现,根据剩下的11条
4、棱,我们仍然能够看出长方体的大小。再次,引导学生思考:最多可以拿走多少根小棒,最少剩下哪几根小棒,我们仍然可以看出长方体的大小?让学生想一想,试一试。最后,学生通过动手实践后发现,最多拿走9根小棒,剩下相交于同一个顶点的3根小棒后,仍然可以确保我们看出一个长方体的大小。这样,长方体的长、宽、高的概念便水到渠成地得出。此时概念的获得过程是学生自主建构概念的活动过程,原本抽象的数学概念在学生的动手实践中得以自主建构,概念的形成更加外显,概念的获得更加鲜活,概念的抽象变得形象,概念的理解更加深刻。二、反面例证中层现概念形成过程,帮助学生全面认识概念。没有比较就没有鉴别。一个数学概念在学生头脑中初步形
5、成之后,如果缺少相应的变式”的理解,将会是模糊的、不全面的。只有通过正面的强化理解与反面的对比认识的互相沟通,让学生的思维经历从“立”到“破而后立”的螺旋式上升的认识过程,才能真正帮助学生建立起对数学概念的深刻理解。同时帮助学生在理解概念的基础上,进一步沟通核心概念及其相关概念的联系,起到举一反三、触类旁通的学习效果。例如三角形的概念的形成过程。首先,让学生准备好各种平面图形卡片(如图1),引导学生思考:将所有这些图形分成几类,你会怎么分?为什么?学生能够容易地得到:可以将三角形单独分为一类,因为它们都是有三条线段的图形。其次,针对“三条线段”的图形,我们可以出示反例(如图2):这两个图形也是
6、由三条线段组成的,它们是三角形吗?为什么?学生意识到,三角形不仅仅是由三条线段组成,而且是由三条线段围成的。再次,针对“三条线段围成”,我们进一步出示反例(如图3):像这样,由三条线段围成的图形是三角形吗?很显然,这时的三条线段没有首尾相连,因而组成的图形不是三角形。最后,为了强调“首尾相连”,我们可以继续出示反例(如图4):像这样,你认为它们是不是符合首尾相连的要求,是三角形吗?这时,学生会认识到,三条线段没有全部首尾相连,还有一个缺口,没有封闭。通过反例,激起学生认知冲突,促使学生在层层递进的矛盾解决中建立起数学概念,丰富对数学概念的理解,形成对数学概念全面、深刻的理解。三、概念限制中层现
7、概念形成过程,帮助学生逐步抽象概念。我们可以通过概念的限制,把一个外延较大而内涵小的概念逐步丰富变化为一个外延小而内涵丰富的新的概念。概念的限制过程就是一个强抽象的过程,它立足于已有概念,引入新的特征或条件得到新的概念,使新的概念成为原概念的一个特例。概念的限制过程既展示了概念的逐步抽象过程,又向学生渗透了获取知识的方法。如“因数”、“公因数”、“最大公因数”等概念的认识过程。从学生的认知规律和知识的逻辑体系考虑,我们首先学习了“因数”的概念,此时学生能够求出一个数的因数。在此基础上,我们就可以求出两个或更多数的因数,其中它们共有的因数即为“公因数”。这时的“公因数”的概念就是利用概念的限制,
8、缩小了“因数”概念的外延得到的一个新的概念。同理,我们继续缩小“公因数”概念的外延,将“公因数”限制在“最大”的条件内,得到“最大公因数”的概念。因为概念的限制过程注重将未知转化为已知,由已知得到未知,立足原有知识经验基础,所以,利用概念的限制来获得和认识新的概念,知识发展脉络会更顺畅,认识过程会更符合学生学习的心理特点和认知规律。四、类比推理中层现概念形成过程,帮助学生形象理解概念。类比推理是根据两个对象具有某些相同的属性,其中有一个对象还有另外某个属性,从而推论出另一个对象也可能具有这个属性。它是一种根据事物的相同点,从已知到未知,探求新知识的方法,非常便于学生发现、理解和生成新的数学概念
9、,扩大认识成果,启发学生认知。例如在教学“梯形”概念时,“只有一组对边”和“一组对边”有何不同,学生理解起来十分困难。如何帮助学生理解呢?首先,引导学生比较“老师会用筷子吃饭”和“老师只会用筷子吃饭”这两个句子有什么不同?学生认识到,“会用筷子吃饭”就是说老师除了会用筷子吃饭外,还能够用其他的东西吃饭,比如勺子、叉子等等,而“只会用筷子吃饭”就是说老师除了筷子,就不会用其他的东西吃饭。这样,学生在熟悉的生活情境中,理解了“有”和“只有”的区别。其次,理解“梯形”的概念,并把它与“平行四边形”的概念进行对比。有了前面的铺垫,学生认识到,梯形和平行四边形都有两组对边,但是平行四边形的两组对边都要平行,而梯形的两组对边中,只有一组对边平行,另一组对边不平行。另有学生补充,如果不强调“只有一组”的话,那两组对边平行时我们也可以说其中有一组对边平行。这样,学生对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度音乐节场地借用与现场管理服务合同3篇
- 2024软件版权授权与维护服务合同2篇
- 2024年餐饮行业合伙人加盟协议模板版B版
- 2024年版物联网技术研发与应用合同
- 2024幼儿园幼儿艺术教育课程开发与实施劳务合同3篇
- 2024年股权质押融资借款具体合同版
- 2025年度数据中心机房租赁及智能化升级服务合同3篇
- 2024年经销商销售权益合同一
- 2024版承包茶馆经营合同
- 2024年贵族小学教师聘请协议3篇
- 《现在完成时》语法复习课件(共44张-)
- 岩溶地区建筑地基基础技术规范DBJ-T 15-136-2018
- 二年级下册语文《第3单元 口语交际:长大以后做什么》课件
- 自动控制原理(山东大学)智慧树知到期末考试答案2024年
- ba年会快闪开场模板
- 游戏你来比划我来猜的PPT
- 污水处理设备供货方案
- GB/T 45007-2024职业健康安全管理体系小型组织实施GB/T 45001-2020指南
- BRC全球标准包装材料标准讲义
- 2024福建省能化集团下属古雷热电有限责任公司社会招聘笔试参考题库附带答案详解
- 江苏省苏州市2023-2024学年高一上学期期末学业质量阳光指标调研政治试卷
评论
0/150
提交评论