群决策和社会选择25_第1页
群决策和社会选择25_第2页
群决策和社会选择25_第3页
群决策和社会选择25_第4页
群决策和社会选择25_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十二章群决策与社会选择Group Decisio n-maki ng and Social Choice Theory§ 12-1概述一、为什么要研究群决策A. 在现实生活中任何决策会影响一群人,因此在公正、民主的社会中 ,重大的决策应尽量满足受该决 策影响的群众的愿望和要求 群众通过代表反映愿望和要求,代表们构成各种委员会行政机构中的领导班子社会发展t信息和知识的积累及更新速度加快,领导个人难以在掌和应付t智囊团和咨询机构应运而生并广泛存在,作用加强委员会、代表大会、议会、协会、俱乐部,领导班子、组织,智囊团等等都是群,群中的成员各有偏好,要形成集体意见需要研究群决策和社会选择理

2、论B. 世界上矛盾无处不在,人与人、组织与组织、国与国之间的矛盾如何解决,如何避免冲突升级,需要研究协商、谈判、仲裁、调解、合作对策等冲突分析方法,因而冲突分析也是群决策的主要研究内容.、分类涉及内容及解决办法-投票表决厂社会选择.一委员会-社会选择函数-社会福利函数激发创造性采集意见系统结构的探索群体参与仿真策 Team theory群决尺S策I多人一般均衡理论组织机构决策实施与管理递阶优化组织决策管理正规型扩展型特征函数策 冲 协商与谈判K-S突Mid-mid分均衡增量析主从对策与激励强制仲裁仲裁与调解一5 最终报价仲裁亚对策论-组合仲裁三、社会选择的定义与方式1. 定义:(Luce &a

3、mp; Raiffa )社会选择就是根据社会中各成员的价值观及其对不同方案的选择产生社会的决策;即把社会中各成员对各种状况的偏好序集结成为单一的社会偏好模式2. 社会选择的常用方式:惯例、常规、宗教法规、职权、独裁者的命令、投票表决和市场机制其中:投票:少数服从多数,大多用于解决政治问题;市场机制:本质是用货币投票,大多用于经济决策;独裁:根据个人意志进行(取代)社会选择;传统:以惯例、常规、宗教法规等代替社会中各成员的意志传统到独裁的演变:传统(无论惯例、常规还是宗教法规)在开始时是社会上大部分公民 或成员认可的规则(以及规定、法规),随着社会的发展,总有新的问题、新情况是原来的 规则(以及

4、规定、法规)所无法解决的,解决这些新的问题、新情况的新规则就要由社会上比较有威望的某些人制订,这些人在解决新问题、新情况时就代替整个社会进行了选择只要这些人不是以民主方式选举产生的,他们的权力就会逐渐增大,成为代替社会进行决策的小团体这个小团体中最强有力的人物最终也就有可能成为独裁者§ 12.2 投票表决(选举)(Voting)投票表决可分成两步:1.投票,应简单易行2. 计票,应准确有效-、非排序式投票表决 (No n-ranked Vot ing Systems)(一)只有一人当选1. 候选人只有两个时:计点制(Spot vote)投票:每人一票;计票:简单多数票(simple

5、plurality)法则(即相对多数).2. 候选人多于两个时简单多数(相对多数)过半数规则(绝对多数Majority)第一次投票无人获得过半数选票时,a.二次投票,如法国总统选举.b.反复投票:i.候选人自动退出,如美国两党派的总统候选人提名竞选;ii.得票最少的候选人的强制淘汰,如奥运会申办城市的确定.例12. 1由11个成员组成的群,要在a、b、c、d四个候选人中选举一人.设各成员心目 中的偏好序如下:成员i1234567891011排序第一位aaabbbbcccd第二二位cccaaaaaaaa第三位第四位d d b bd bcdcdcdcddbdbdbcb按简单多数票法则,b得4票当选

6、实际上,虽然有4人认为b最好,但是有7人认为b最差;虽然只有3人认为a最好,但是其余8人认为a是第二:位的所以,由a当选为宜.例12.2设各成员心目中的偏好序如下成员i :1234567891011排序第一位b bbbbbaaaaa第二位a aaaaacccdd第三位c ccddddddcc第四位d ddccccbbbb按简单多数票法则或过半数规则,b得6票当选.实际上,虽然有6人认为b最好,但是有5人认为b最差;虽然只有5人认为a最好,但是其余 6人认为a是第二位的;所以,由b当选未必合适.例12.3设各成员心目中的偏好序如下成员i1234567891011排序第位bbbccccddaa第二

7、二位aaaaaaaaabd第三位dcdbbbdcbdc第四位cdcdddbbccb按过半数规则,第一次投票无人获得过半数选票,c、b得票多,第二投票时,6人认为c比b优,c当选.而在该问题中没有人认为a处于第二位以下,却有4人认为c最差.由上面三个例子可知,无论简单多数票法则、过半数规则还是二次投票,都有不尽合理 之处(二) .同时选出二人或多人1. 单一非转移式投票表决(Single nontransferable voting)投票人每人一票,得票多的候选人当选.如:日本议员选举采用选区制,每选区当选人数超过2个,1890年起即用此法.2. 复式选举(Multiple voting)每个投

8、票人可投票数=拟选出人数但对每个候选人只能投一票弊端:在激烈的党派竞争中,实力稍强的党派将拥有全部席位.因此该方法只能用于存在共 同利益的团体、组织内部,如党团组织和班干部的选举.3. 受限的选举(Limited voting)每个投票人可投票数v拟选出人数对每个候选人只能投一票弊端:同上.1868年英国议会选举采用此法,1885年即取消.4. 累加式选举(Cumulate voting)每个投票人可投票数=拟选出人数.这些选票由选举人自由支配,可投同一候选人若干票 利:可切实保证少数派的利益.大多用于学校董事会的选举,例:英国(1870-1902).(注意:公司董事会的选举与此不同.)5.

9、名单制(List system)由各党派团体开列候选人名单,投票人每人一票,投给党团.此法于1899年用于比利时,以后被荷兰、丹麦、挪威和瑞典等国采用.计票分两种:.最大均值法;.最大余额法例12. 4 24000人投票,选举5人,A、B、C、D四个党派分别得 8700、6800、5200、3300 票,如何分配议席?(1)最大均值法:A党首先分得第一席.第二席分给各党派时,各党派每一议席的均值如下:党派得票除数均值(每一议席的得票均值)A870024350B680016800C520015200D330013300由于B党的均值最大B党得第二席.分第三席时各党派每一议席的均值如下党派得票除数

10、均值A870024350B680023400C520015200D330013300C党得第三席,分第四席时各党派每-议席的均值如下:党派得票除数均值A870024350B680023400C520022600D330013300由于A党的均值最大,A党得第四席.分第五席时各党派每一议席的均值如下党派得票除数均值A870032900B680023400C520022600D330013300B党的均值最大B党得第五席最后A B各得2席,C得1席.最大余额法:首先计算Q=N/K的值:Q=24000/5=4800,用各党派得票数除以Q并计算余数:党派得票除数分得席位余额A8700480013900

11、B6800480012000C520048001400D3300480003300按每4800票得-席,A、B、C党各得一席,剩余2席,因为A、D两党的余额大,最后A党得2席,B、C和D党各得一席可以证明,最大均值法对大党有利;最大余额法对小党有利6. 简单可转移式选举 (Single nontransferable voting)常常用于3-6个席位的选区.投票人每人一票.现况值Q=N/(K+1),得票数大于Q的候选 人人选,得票最少的候选人被淘汰,由未被淘汰的未当选候选人在下一轮中竞争剩余席位.仍以例12.4说明.N=24000, K=5,故Q=N/(K+1)=24000/6=4000,设

12、各党派候选人的第一次投票得票数为:候选人: A 1 A 2 A 3B1 B 2 C1 C2 D1得票数:4100410050041002700405011503300其中,A 1 ,A 2 , B 1 , C 1第一次投票后可入选,A 3被淘汰,B 2 , C2 , D 1通过第二次投票竞争最后一席这时Q=24000/2=12000.支持A党的可转移投票方向,他们在让谁入 选上有决定性影响.7. 认可选举(Approval vote )每个投票人可投任意张选票,但他对每个候选人只能投一张票.得票最多的前 K个候选人当选.如职称评定,评奖,评先进等.(三).其它投票表决(选举)方法1. 资格认定

13、.候选人数M=当选人数K即等额选举,用于不存在竞争或不允许竞争的场合.不限定入选人数如学位点评审,职称评定,评奖等.目的不是排序.而是按某种标准来衡量被选对象.2. 非过半数规则2/3多数,例美国议会推翻总统否决需要2/3多数.2/3多数= 60%多数,例如希腊议会总统选举,第一次需要2/3多数,第二次要60%多 数.3/4多数,美国宪法修正案需要3/4州议会的批准.过半数支持,反对票少于1/3.例如1993年前我国博士生导师的资格认定.一票否决,安理会常任理事国的否决权.、偏好选举与投票悖论(Paradox of voting )1. 记号N= 1,2,n 表示群,即投票人的集合;A= a

14、1 ,am备选方案(候选人)集合;Ai )i成员(投票人)i的偏好;AG, G群的排序.n jk 或 N(aj ' aQ群中认为aj优于ak的成员数采用上述记号,过半数规则可以表示为:对 a j,a k A 右 n jk > n kj 贝V a j G a k ; 若 n jk =n kj 则 a j G a k2. Borda 法(1770 年提出)由每个投票人对m个候选人排序,排在第一位的得m-1分,排在第二位的得m-2分, 根据各候选人所得总分多少确定其优劣.3. Condorcet 原则(1785 年提出)对候选人进行成对比较,若某个候选人能按过半数规则击败其它所有候选人

15、,则称为Condorcet候选人;若存在Condorcet候选人,则由其当选.用上述记号表示,即:若njk > nkj V ak A a j ,则aj当选.例12. 5群由60个成员组成,A= a, b, c ,群中成员的态度是23人认为a 'c b(即a优于c ,c优于b, a也优于b)16人认为c _b -a2人认为c _a _ba 与 b 相比 N(a _b)=25.N(b a)=35因此有b 'gaa 与 c 相比 N(a c)=23,N(c a)=37因此有c _Gab 与 c相比 N(b -c)=19,N(c b)=41因此有c 'gb由于候选人c能分

16、别击败a 与 b,所以 c 是 Condorcet候选人,由c当选但是,常常不存在 Condorcet候选人.19人认为b _c -a4.多数票循环(投票悖论)例12.6若群中60个成员的态度是23人认为a b 'c17人认为b 'c 'a2人认为b a 'c8人认为c b 'a10人认为c a 'b由于N(a 'b)=33,N(b -a)=27因此有a gbN(b c)=42,N(c a)=18因此有b 'gcN(a ©=25,N(c a)=35因此有c 'ga每个成员的偏好是传递的,但是按过半数原则集结得到的

17、群的排序并不传递,出现多数票循环,这种现象称作 Condorcet效应(也叫投票悖论)5.出现Condorcet效应的概率成员数N :357111525OO方案数m= 3.0556.0694.0750.0798.082.0843.08/4.111.14.15.17555.16.20.22.25136.20.25.27.31528.415210.488715.608720.681130.791449.8405三、策略性投票1.小集团控制群 例:百人分蛋糕(操纵性)2.谎报偏好而获益例12.7群由30个成员组成,A= a, b, c ,群中成员的态度是:14认为a b 'c4人认为b -a

18、 _c4人认为b c -a8人认为c b -a8人撒谎,根据Borda法和Condorcet原则,都应由b当选,但是,若认为a b -c的14人中有 称他们认为 a c _b ,则按Borda法,将由a当选.3. 程序(议程)问题例12.6所述问题:后参加表决的方案获胜 四、衡量选举方法优劣的标准 能否充分利用各成员的偏好信息 若存在Condorcet候选人,应能使其当选 能防止策略性投票§ 12.3社会选择函数、引言1. 仍以例12.5为例:群由60个成员组成,A= a, b, c ,群中成员的态度是23人认为a'c'b19人认为b'ca16人认为c'

19、;ba2人认为c'ab根据Condorcet原则c当选根据简单多数规则a当选根据过半数(二次投票)规则b当选.那么这该例中一共只有三个候选人,采用不同选举方法时,这些候选人都有可能当选些方法中究竟何者合理 ?据何判断选举方法的合理性?2例12.6表明多数票循环不可避免,问题是:出现多数票循环时该谁当选?.这种数量指标称为社会选择函数研究社会选择问题的理论家提出:应该采用某种与群中成员偏好有关的数量指标来反映群二、社会选择函数的几个性质0.记号在对x,y比较时11右x i yD i =0若xi y-1右y i x群中各成员的偏好分布D=(D 1,Dn)偏好分布的集合D= -1,0, 1

20、n(即社会)对各方案的总体评价社会选择函数F(D) = f( D 1 ,Dn )"DC D即 F : -1, 0, 1 T -1,0, 1 1. 明确性(Decisiveness)D 工 0 t F(D)工 02. 中性(Neutrality)又称对偶性对侯选人的公平性f( -D 1,-Dn) = - f( D 1,,Dn)3. 匿名性(Anonymity)又称平等原则各成员的权力相同f( D 1,,D n ) = f( D ;二1),,D .-(n)其中b是(1,n)的新排列4. 单调性(Monotonicity)又称正的响应若 D > D'贝U F ( D ) &g

21、t; F ( D ')5. 一致性(Unanimity)又称 Weak Pareto 性f ( 1, 1,1) = 1 or f ( -1,-1,,-1) = -16. 齐次性(Homogeneity)对任意正整数m F ( mD ) = F ( D )7. Pareto 性D i 1,0 for all I and D = 1 for some k t F(D ) =1D i = 0 for all I t f ( D ) = 0三、社会选择函数1. Con dorcet-函数fc(x) = min n( x 'i y )f c (.)值愈大愈优.例12. 6群中60个成员的

22、态度是:23人认为a'bc17人认为b 'c a2人认为b'ac8人认为c'ba10人认为c'abN(a ®=33, N(a c)=25 因此 f c ( a ) = 25N(b a)=27, N(b ©=42,因此 f c ( b ) = 27N(c a)=18, N(c a)=35,因此 仁(c ) = 18 b 'g a 'g cCon dorcet-函数值还可以用下法求得:根据各方案成对比较结果列出表决矩阵f-3325N =27-42、3518-一即Condorcet-函数值.2. Borda-函数矩阵中各行最

23、小元素:252718Co ndorcet-函数满足性质 16.fb (x)=' N( x -i y )y" xf b (x)即表决矩阵中x各元素之和,fb ()值愈大愈优.例12. 6中方案a ,b ,c的Borda-函数值分别是 58, 69, 53, /.b - G a - G CBorda-函数满足性质16.3. Copela nd-函数根据各方案两两比较的胜负次数的差来定f cp (x) = My: y A 且 x Gy- My: y A 且 y gxf cp (.)值愈大愈优.例12.6中方案a ,b ,c的Copeland函数值均为0,三者平局Copela nd-

24、函数满足性质 16.4. Nanson 函数用Borda-函数求解,每次淘汰Borda-函数值最小的方案A j 1 = A j x A j ; fb (x) w f b (y),且对某些 y fb (x) v f b (y) 直到A j 1 = A j为止.例 12. 6 中 fb (c)的 Borda-函数值最小,A 2 = A 1 c = a, b A3 = A 2 b = a - - a g b g cNan son函数不满足性质(4).5. Dodgson 函数(C.J.Dodgson,英,1832 1898)使某个候选人成为 Condorcet候选人需要N中成员改变偏好的总选票数N个

25、成员,m个候选人记n jk = N (a j ' i ak)n为偶数时 n0= n/2n为奇数时 n0=(n+1)/2 n” = 0mf (a j) =J n。-n jk| (n。-n jQ. 2j=1,m例 12.6 中,a,b,c 的 Dodgson 函数值分别为 5, 3, 12, b 'G a 'G cDodgson函数不满足 (4).6. Kemeny 函数使社会排序与各成员对方案的偏好序有最大的一致性首先定义:社会选择排序矩阵L = I jk 1I jk =0-1e jknjknkjn na j_Ga kajgakak'gajA上的每一线性序都对应一

26、个L记 njk = N (a j 'g a k)nkj = N (a k 'g a j )*njk = N (a j g a k) 比例矩阵M = m jk*m jk = (n jk + n j"2)/n 投票矩阵E = M-M T定义 < E L > = -ejk Ijkj k它反映群的排序与成员排序即,群中认为a j a a k的成员的比例与群的排序ljk的内积, 的一致性.Kemeny 函数f k = max < E L >。7. Cook-Seiford 函数设成员i把方案j排在rj位,方案j的群体序为K则成员I与群体序的总偏差:

27、9;| rj-K |j各成员排序与群体序的总偏差d jk = ._| rij -K |ij数学规划minf二:d jk pjkj ks.t.二jP jk二 p jk = 1k的解中p jk = 1表示方案j的群体序为K8. 本征向量函数Dodgson 矩阵D = d jk 其中:d jk = n jk /n kj ,显然 d jk = 1/d kj ,但是 d jk 丰 djl * dlk ,可由(D - ml) W = 0求得 W后.按各分量的大小排相应方案的次序9. Bernardo 函数上述各种方法只根据各成员对各方案的总体优劣集结成群体序对某些多人多准则问题,尤其是实际工程问题,应该根

28、据每个准则下各方案的优劣次序集结成群体序一般的多准则社会选择问题可以表述为:对有限方案集A= a 1 ,,am,由委员会N= 1,2,,n 根据准则集(即评价指标体系)C= C1, C1,Cr来确定各方案的优先 次序在求解问题时,首先要根据r种不同的准则中的每一种准则 ,分别描述各方案a的优劣. 为了集结各成员的意见,可以用协商矩阵n表示委员会对各方案优劣的总体感觉 n是m Xm方阵,其元素二jk表示将方案a排在第k位的成员人数为了反映各准则的重要性,可以 对各准则加权权向量W= w1, W2,wr.设根据准则ci,有xjk位成员将 日r排在第k位,贝V二jk=X W| .xjk, Berna

29、rdo定义一个0-1矩阵P,其每行、每列只有一个1元素为1,余者均为0.使二 ' jk pjk 极大,即 j ,kmax i -' jk Pjkj kms.t. 二 Pjk =1k=1,2,mj mm二 p jk =1j=1,2,mk dPjk0,1P中的非0元素Pjk =1表示方案a应该排在k位.§ 12.4 社会福利函数(Social Welfare Function) 一、社会福利(Social Welfare)1. 福利经济学是经济学中的一个学派,主要研究社会的福利与福利的判断问题;2. 福利经济学家(例Bergs on, Samulson等)认为:社会福利是

30、一种可以测度的量,人们可据以判断一种社会状况是优于,无差异于还是劣于另一种社会状况。即可以用Social welfare function来度量社会福利。定义:SWF是社会状态x的实值函数,是社会福利的测度,记作W(x)=G(w, (x),wn (x)Note:社会福利是社会中各成员所享受福利的综合,而非总和;个人的福利 wi(x)与该成员对社会的贡献、地位、个人的兴趣、爱好等多种因素 有关3. 若用u i (x)表示社会状态x带给成员i的福利,贝y W(x)=G(u 1 (x),u n (x),n在相互效用独立时 G可表示为加性,即 W(x)= VjvuMx)但是,由于存在不确定性,设导致x

31、 j的自然状态B j的概率为n ( 0 j)故应有:max E二W(x) =W(Xj) 二何),所以社会福利的判断极其复杂.j即使对确定性的xa) 各成员间的效用并不独立:不患寡而患不均;b) 两个人的福利相加并无意义(一个人享受双分福利与二人各享受一份绝不等价),所以加性社会福利函数并无实际意义.而且使用SWF存在如下问题: 各成员的福利(效用)函数如何确定? 人与人间的福利函数如何校定基准值与比例尺,即如何进行效用的人际比较? 由谁评价?怎样评价?即个人的诚实性与评价的公平性如何检验?社会福利函数的实质:是一种规则,是潜在的群决策过程,是从个人对社会状况的排序得出社会总体排序的方法.二、偏

32、好断面 (profile of preferenee ordering)(偏好分布)1(1)二个方案x y , xy ,x 讨(2)三个方案R1 : x - y -z ,2R : xzy ,13,R : x - y - z记各方案间可能的偏好序集合r= R1 R2,R ,R S ,则可能的偏好序种类 S为方案数m234578只考虑强序时m! 26241207205040全部S313755414386460332儡灯巴丫面:记成员i的排序为Oi , 0疋r(n)偏好断面 P = ( 01,02,0n)P r社会福利函数f : p r3. 可能的社会福利函数2个成员,2个方案成员的偏好序S=3时,

33、f的定义域即偏好分布有3 2 = 9种,f的值域即群的排序为3,因此,f的可能形式有3 9 =19683种.27123个成员,2个方案时,f的可能形式有3=7.6256 X 10 种2个成员,3个方案时,f的可能形式有13 169 =1.8X 10 188种.3个成员,3个方案,只考虑强序时,f的可能形式有6216=1.2X 10 168种.在这许多可能形式中,哪些比较合理呢? K. J. Arrow研究了社会福利函数应当满足的条件.三、Arrow的条件(即社会福利函数应当具有的性质)条件1.完全域(广泛性)U niversalitya).m > 3b).N > 2c).社会福利函

34、数定义在所有可能的个偏好分布上;条件 2.社会与个人价值的正的联系(Positive association of social and in dividual value)若对特定P,原来有X P y,则在P作如下变动后仍有有 X P yi. 对除x以外的方案成对比较时偏好不变ii. x与其他方案比较时或者偏好不变,或者有利于X。(有利于 X是指 xy x ' y或者 y r x x - i y或 x _i y)原来有x - G y,则在P作如上变动后仍有x - G y或x y条件 3 无关方案独立性(I ndependenee of I rrelevant A lternative

35、s)i. A1 A , A1 U A1 = A 对A1中方案的偏好变化不影响A1中方案的排序 换言之ii. x , y的优劣不因z的加入而改变.条件4.非强加性(公民主权 Citizen'sovereignty)总要有某些成员认为x r y时,才能有x 'G y.条件 5.非独裁性(Non-Dictatorship )群中任一成员i都没有这样的权力:x = yx 'G y此外,个人和群的优先序应满足连通性(可比性),传递性.条件2加条件4即P areto条件.四、Arrow的可能性定理定理1 (m=2的可能性定理)若方案总数为2,过半数决策方法是一种满足条件15的社会选

36、择函数,它能对每一偏好分布产生一个社会排序。定理2 (一般可能性定理)即Arrow不可能定理若m3,社会中的成员可以对方案以任何方式自由排序,则满足条件2和3且所产生的社会排序满足连通性和传递性的社会福利函数就必定是,要么是独裁的,要么是强加的。Arrow不可能定理的本质是Condorcet效应(投票悖论)的公理化描述.另一种表述法*:满足(U.P.I)的防投票策略性选举都可能产生一个独裁者,即没有一种选举方法是非独裁的且是防投票策略的.五、单峰偏 Black好与Coombs条件要使Arrow的不可能定理成为某种可能性定理,必须放松Arrow的条件1、2、3.首先放松条件1(完全域).1. 单

37、峰偏好背景:在议会中,通常可根据各党团的政治倾向从左到右(或从激进到保守)依次排列.此时议员对各党派(以及该党派的议案或候选人)的排序就和这些党派的政治倾向与议员本人的政治观点的距离有关,即满足单峰偏好约束.2. Coombs 条件背景:给a赋值n (aj),成员i的理想点为Ii,方案a的优劣与I n (a)-li I的大小成反比例.Coombs条件与单峰偏好的区别:Coombs条件要求对称于Ii .3. 多样性程度(不考虑,只考虑强序)Fb(m) = 2Fc (m )=(m -1)m+1华中理工大学学报 22(8)2m345710Fb(m)/m!2/38/2416/120.0131.41 X

38、 10Fc (m )/m!2/37/2411/120.0041.27 X 104.使过程多数规则具有传递性的偏好断的规模六、SCF与SWF的比较同异:均为集结方法采用数学的投表决法(排序)以方案成对比较作基础 SWC的方案可以无限,SCF中方案有限性质与条件:2 t单调性2+4t Pareto 最优(一致性)(3), 5 t匿性性1b自反连道J明确性§ 12.5群效用函数-、导致Arrow不可能定理的原因 否认效用的基数性; 否认效用的人际比较的可能性以咖啡或茶待客问题为例:甲认为咖啡-茶乙认为茶咖卩啡由甲乙构成的群不能作结论但若抛开无关方案独立性条件:甲认为 咖啡-茶-牛奶-汽水-

39、可乐-啤洒乙认为 茶-牛奶-汽水-啤洒-可乐-咖啡则似以茶待客为宜但是,若甲乙表达的对饮料的偏好强度如下乙的鴉用-茶汽水町乐1咖阱-茶汽水则仍以咖啡待客为宜即:若各成员的偏好可比强度可测,则集结成员偏好序就成了集地各成 员的基数效用这一效用函数满足两个公理和五个条件, 阿罗的不可能定理就成为可能定理、群效用函数与多目标效用函数的比较形式相同:对方案的评价都涉及多个准则实则不同:MAUF是由一个决策人作判断的,只要量化他对各属性的偏好(即可以由他一个人对各属性值作权衡)这种量化是可以实现的;GUF要考虑群中各成员的偏好, 再设法集结,由于a+ui(x)仍是成员i的效用,如何确 定各成员的a(a为

40、效用基准)、b(b为比例尺度),使群中各成员的效用可比,这是很难(如果 不是不可能!)实现的有人提出:集结群体效用应该找一个超脱于各成员之外,公正无私的人,他要想象自己处于群种各个成员的客观地位且具有其相同的主观爱好,去估计各种社会状况对群中各成员的效用,再据以集结成群的效用但是,在现实生活中,不可能找到这样的人 三、群决策提法本身存在缺陷在第一章中,我们指出:决策是自由意志行动因此,个人能决策;群不是统一实体,不具备自己意志,不能决策,群是社会的作用:群中成员只能决定: 如何投票;是否接受他人意见;是否要提反对意见§ 12.6谈判与仲裁§ 1261引言一、群决策的分类Ha

41、rsanyi根据群中成员的行为准则把群决策分为两大类: 从伦理道德出发,追求群作为整体的利益,属于集体决策,即社会选择问题例如:委员会,董事会,智囊团所作的决策; 追求自身利益及与他人对立的价值,是对策即博奕问题,谈判可以归入这一类二、研究沿革 1994 Von-Neuma nn-M orge nsterm,用数学模型研究谈判问题 Nash(1950)谈判问题(Bargaining Problem) Luce, R.D & Raifa, H(1957), Games and Decision Raiffa, H.(1982):The art and Scienee of Negotia

42、tion§ 12-6-2 Nash谈判模型一、问题表述:甲、乙两个谈判者,效用分别为uq )和u2( );可行域为R,现况点为(Xc,yjPareto最优边界QP的子集MN较现况点占优势,MN称为谈判集(见下图).1. 每个人都指望对方是合乎理性的;2. 谈判双方的效用函数()和呼()能足够精确地反映各自的偏好 ;3. 任何协议一经达成就具有强制性,不得违约.三、Nash提出的四条公理 一一为了预先求得谈判结果公理一后果限于谈判集内谈判双方一致达成的协议点(x* ,y*)是谈判集中的点,是可行的,Pareto最优的,不劣于现况点的值。公理二对称性如果可行域是对称的,现况点是对称的(即

43、若(x,y) R,则(y,x) R;Xc= yc ),贝V达成的协议点也是对称的(即 x=y )。即取方均令乎理性:嶷略互为競象对称协议点公理三策略上等价表示的不变性由U1( ) > U1 ( )= a 1 U1( )+3 1U2( )_. U2' ( )= a 2 U2( )+3 2构成新问题,*若(X,y)是原问题的协议点,则(必 -1 ,2y2)是新冋题的协议点由此公理,在求解谈判问题时不必对双方的偏好强度作人际比较,且可以对谈判问题进行座标变换使之规范化再求解。公理四无关方案独立性有二个谈判问题,若RRi ;两个问题的现况点相同,且(xc,yc) R2,且第一个谈判问题的

44、协议点(x*,y*) R2,贝y(x*,y*)也是谈判问题二的协议点.四、定理右公理一到四成立,且R中存在X> xc, y> yc的点,则(x , y )唯一,它使定义在 R上的函数(X-xj( y-yc)取极大值.更一般的,对n2的多人谈判问题,Nash-Harsanyi谈判模型为:nmaxi 丨以-c)i吕s. t. XiC1=1,2,,nx R其中Ci为判谈人i的现况值,Xi为判谈人i的后果,x =(X1,X2,xn),R为x的可行域五、评注对实际的谈判问题: Pareto边界于复杂,难以求得 效用难以设定(足够准确); 公理四的合理性可疑例:图 12.3图12.3之a所示为

45、谈判问题一,现况点为(0,0),由于可行域的对称性,以(0.5, 0.5)作为协议点是谈判双方都可以接受的;根据公理四,在R1二,可行域为R2,见图12.3之b.问题二的协议点仍为 大可能值的一半,双方都能接受;可能值,即在谈判中乙方未作任何让步 的实力地位,没有什么无关方案.中去掉无关方案R2,得到新的谈判问题 (0.5, 0.5).在问题一中,谈判双方各得最 问题二中,甲方只得最大可能值的一半,而乙方得到了最大,甲对此肯定难以接受.事实上,可行域反映了谈判人§ 12-6-3其他谈判模型一、等效用法(即K-S法) 规范化问题:图12.3之b所示的谈判问题二可以规范化 如右图取直线x

46、=y与谈判集x=yx+y/2=1的解 y=x=2/3为谈判问题的解非规范化问题,现况点为(xc,yc),谈判集为X=g(y)时,协议点为Xmax xcx-Xc=(y-yc)ymax 一 ycx = g(y)对图12.3之b所示的谈判问题的解/ x=2y-x+y=1的解为(2/3, 1/3)二、中间一一中间法谈判双方各得最大效用的一半,再得潜在增量之半,如此继续,直到到达谈判集中的某一点(潜在增量:在不损害对方利益的情况下,某个谈判人可以获得的利益)例(同上图).双方先达到 G(0.5, 0.5)处,这时匕的潜在增量为0.25, y的潜在增量为 0.5;各得一半到达D(0.625, 0.75).

47、因为D点在谈判集上,D点就是协议电.般的,记(x0,yo)为现况点,(X0,Y0)为谈判集中最大值,可以按下列步骤求得协议点第一步新的临时协议点为: Xi+1=0.5(X+Xi)yi+i=o.5(Yi+yi)第二步 检验(Xi+i, yi+i)是否在谈判集上,若是,终止否则令 Xi+i = g(yi+i)Yi+i = f (Xi+i)转第 -步这种方法的不足之处:在x '处y取得极大值时,x<x'处的可行域形状与后果无关;即:在XV g(ymax)处可行域的变化不影响谈判结果三、均衡增量法选足够大的N,谈判双方各得潜在增量的i/N,得到新的临地协议点;从新的临地协议点出发

48、,重复上述步骤,逐步进行达到谈判集为止.(注意初始点的选定问题)记现况点为(x0,y0),选择足够大的正整数N,令:Xi+i=i/N g(yi)-xq+ Xiyi+i=i/Nf(Xi)-yi+ yii=o,i,2,反复迭代,直至产生协议点.§ I2-6-4谈判问题与效用一、谈判问题建立在效用空间上的必要性由于相同的实物对不同的人有不同效用,在就有必要引入效用;由于策略表示的等价性,可避免效用的人际比较的困难二、使用效用存在的问题: 如何获得足够精确的效用函数, 鼓励说谎:效用函数越凸的谈判者好处越大,例:谈判双方要分配100元,达不成协议时双方的收入均为0.设甲乙双方均为风险厌恶的他

49、们关于货币x的效用函数均为In(i + x);设甲得y元,则乙得(100-y)元,他们的效用函数分 别为w=l n(i+y)u2=l n(i+i00-y)=l n(i0i-y)据此可得表i2.i(表中ui'为规范化的效用值)及图i2.5表i2.i货币与效用对照表yi,25i0 ,203040506070809095i00In (i+y).69i.ii.742.43.043.433.7i3.934.ii4.264.394.5i4.564.62ui'.i5.238.388.52.66.74.8i.85.89.92.95.98.99i.0由于谈判问题的对称性,无论采用哪一种方法求解,

50、协议点均在点B(.85, .85)处,折合成货币,双方各得50元.但是,如果谈判人甲谎称自己是风险中立的,即效用函数是货币 x的线性函数:ui=x (这比甲的真实效用函数凸),而谈判人乙真实地宣布自己的效用函数为In(1 + x).设甲分得z元,贝U有:ui=zu2=l n(101-z)据此可得表12.2和规范化的谈判问题如图12.6所示.z010203040506070809095100u1'0.1.2.3.4.5.6.7.8.9.951.0U24.624.514.404.264.113.933.713.443.042.401.770U2 '1.0.98.95.92.89.85.81.79.66.52.390由于这时的谈判可行域不对称,采用不同的谈判模型得到的协议点各不相同采用Nash模型求得的协议点为B (0.77, 0.69);采用等效用法、中间-中间法和均衡增量法求得的协议点分别为C(0.72, 0.72)、D(0.75, 0.71)和E(0.76, 0.70).由于规范化后的谈判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论