




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、定积分的性质与计算方法摘要:定积分是微积分学中的一个重要组成部分 ,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。关键词:定积分 性质 计算方法定积分的定义设函数f(x) 在区间a,b上连续,将区间a,b分成n个子区间x,xi, (x 1,x 2, (x 2,x 3,(x n-1 ,x n,其中Xo=a, Xn = b。可知各区间的长度依次是: Xl=Xl-Xo, X2=X2-Xl, Xn=Xn-Xn-1。在每个子区间 (X i-1 ,X i 中任取一点 in(1,2,.,n),作和式送
2、 f(Axi。设 入=maxAXi, X2, Xn(即入是i吕最大的区间长度),则当入一0时,该和式无限接近于某个常数,这个常数叫做 函数f(x) 在区间a,b的定积分,记为: f(x)dx。弋a其中:a叫做积分下限,b叫做积分上限,区间a, b叫做积分区间,函数 f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,/叫做积分号。对于定积分,有这样一个重要问题:函数f (X)在a,b上满足怎样的条件,f(x)在a,b上一定可积?下面给出两个充分条件:定理1:设f(x)在区间a,b上连续,则f(x)在a,b上可积。定理2:设f(x)在区间a,b上有界,且只有有限个间断点,则 f(
3、x)在a,b上可积。1例:利用定义计算定积分0x2dx.解:因为被积函数f(x)=x2在积分区间0,1上连续,而连续函数 是可积的,所以积分与区间0,1的分法及点i的取法无关。因此,为了 便于计算,不妨把区间0,1分成n等份,分点为刃,i=1,2,,n-1;这样,n1每个小区间Xi _1,X的长度:x-,i =12,n;取Xi , i =12,n。于是,得 n合式i -1i -1)(2 n1)(1)(2当 0即n:时,取上式右端的极限.由定积分的定义,即得所要计算的 积分为1n1111x2dx 二 lim 2 沪 lim (1 )(2)二0my X 厂 6 n n 3定积分的性质f(x)dx
4、= O1、Lfxdx=-fx)dx,a b3、常数可以提到积分号前I kf(x) rfx = Jt I f(x)dx hjff4、代数和的积分等于积分的代数和|/(x)(r)rfx =f(x)dx5、定积分的可加性:如果积分区间 a,b被c分为两个子区间a,c与c,b则有f(x)dx =厂bI /(x)rfx又由于性质2,若f(X)在区间D上可积,区间D中任意c (可以不在区间a,b上)满足 条件6、如果在区间a,b上f (x)三1,则bb1dx dx二 b-aaa7、如果在区间a,b上,f(x)则,bf(xdx 0t在(a,b)内使8、积分中值定理:设 f(x)在a,b上连续,则至少存在一点
5、f f(xdx = (b-a)f(t)9、设M及m分别是函数f(x)在区间a,b上的最大值及最小值,则bm(b - a) f (x)dx M(b - a)a微积分基本公式定理1:如果函数f(x)在区间a,b上连续,则积分上限的函数x叫x)af(t)dt在a,b上可导,并且它的导数d x:(x)f(t)dt 二 f (x),(a乞 x乞 b)dxa这个定理指出了一个重要结论:连续函数f (x)去变上限x的定积分然后求导, 其结果还原为f (x)本身.联想到原函数的定义,就可以从定理1推知: (x)是连续 函数f (x)的一个原函数.定理2:如果函数f(x)在区间a,b上连续,则函数xG(x)二.
6、f(t)dta就是f (x)在a,b上的一个原函数.这个定理的重要意义是:一方面肯定了连续函数的原函数是存在的,另一方面初步地揭示了积分学中的定积分与原函数之间的联系.定理3:如果函数F(x)是连续函数f(x)在区间a,b上的一个原函数,则ba f (x)dx= F(b)- F(a)这也是牛顿(Newton)-莱布尼茨(Leibniz )公式,它进一步揭示了定积 分与被积函数的原函数或不定积分之间的联系.它表明:一个连续函数在区间a,b上的定积分等于它的任一个原函数在区间a,b上的增量.这就给定积分提 供了一个有效而简便的计算方法,大大简化了定积分的计算手续1例:计算上述用定义求的定积分 x2
7、dx.3解:由于-是X2的一个原函数,所以按牛顿-莱布尼茨公式,有3x2dx= X 11303定积分的计算方法一、几何意义法利用定积分的几何意义是指曲边梯形的面积,只要作出图形就可求出.例:求定积分:j ,1 一打dx的值.解: J 才 d* =丁4 x2 dx ,而J4_x2 ) d x表示圆x2 y4在第一、二象限的上半圆的面积.因为S半圆=2二,又在x轴上方,所以注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出、换元法定理:假设函数f(x)在区间a,b上连续,函数xV(t)满足条件:1、 ()y ()二 b;2、(t)在:(或,:)上具有连续导数,且其值域 RJa,b,则有r
8、 f (x)dx= / f (t)F(t)dta例:计算 4 x 2_dx.一 2x_1解:设 2x 1 =t ,t2 -1,dx 二 tdt,且2当x =0时,t =1 ;当 x =4时,t =3.于是02x 11 3 2 1 (t 3)dt1 t “3t2 31 27 c92 X 3t tdt卜宙3=手注意:在应用时必须注意变换(t)应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.三、性质法(奇偶性)1、若f(x)在-a,a上连续且为偶函数,则aaf (x)dx = 2 f(x)dx-a02、若f(x)在-a,a上连续且为奇函数,则a! f(x)dx = 0-a例:求定积分.4二tan xdx.一4解:由被积函数tanx是奇函数,所以在对称区间的积分值为零即 4 ta nxdx=0.四、分部积分法设u=u(x), V =v(x)均在区间a,b上可导,且u, v R (a,b),则有分部积分公式vufdx例:1计算 jarcsinxdx.解:12arcsinxdx- xarcsinxl0舟x dx0 v1 - x2结论1、计算1一 +2.6亘112 2f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年煤焦油瓷漆涂敷作业线行业深度研究分析报告
- 2025年深冷技术设备项目合作计划书
- 企业大学生培养计划
- 2025年数字出版项目合作计划书
- 2025年水利工程勘察设计项目合作计划书
- 2025年证券登记、结算机构服务项目合作计划书
- 2025年多功能长寿无滴棚膜项目合作计划书
- 2025年物联网市场项目发展计划
- 2024年声学悬浮物监测仪项目投资申请报告代可行性研究报告
- 股权转让预付款合同范本(适用于区块链技术)
- GB/T 38215-2019结构波纹管用热轧钢带
- 四六级英语写作考试辅导资料课件
- 交流电机理论分析
- 真石漆饰面工程检验批质量验收记录
- 妇产科手术配合课件
- (中职)中国税收:税费计算与申报项目十四 企业所得税计算与申报课件
- 心理照护教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案课件合集
- 男朋友申请表
- 高中心理健康:我心换你心——心理主题:人际交往 课件(22张PPT)
- 高清元素周期表(专业版)
- 北京中考英语作文模板
评论
0/150
提交评论