




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Diagram of distribution relationshipsProbability distributions have a surprising number inter-connections. A dashed line in the chart below indicates an approximate (limit) relationship between two distribution families. A solid line indicates an exact relationship: special case, sum, or transformat
2、ion.Click on a distribution for the parameterization of that distribution. Click on an arrow for details on the relationship represented by the arrow. Other diagrams on this site:The chart above is adapted from the chart originally published by Lawrence Leemis in 1986 (Relationships Among Common Uni
3、variate Distributions, American Statistician 40:143-146.) Leemis published a larger chart in 2008 which is available online.The precise relationships between distributions depend on parameterization. The relationships detailed below depend on the following parameterizations for the PDFs.Let C(n, k)
4、denote the binomial coefficient(n, k) and B(a, b) = (a) (b) / (a + b).Geometric: f(x) = p (1-p)x for non-negative integers x.Discrete uniform: f(x) = 1/n for x = 1, 2, ., n.Negative binomial: f(x) = C(r + x - 1, x) pr(1-p)x for non-negative integers x. See notes on the negative binomial distribution
5、.Beta binomial: f(x) = C(n, x) B( + x, n + - x) / B(, ) for x = 0, 1, ., n.Hypergeometric: f(x) = C(M, x) C(N-M, K - x) / C(N, K) for x = 0, 1, ., N.Poisson: f(x) = exp(-) x/ x! for non-negative integers x. The parameter is both the mean and the variance.Binomial: f(x) = C(n, x) px(1 - p)n-x for x =
6、 0, 1, ., n.Bernoulli: f(x) = px(1 - p)1-x where x = 0 or 1.Lognormal: f(x) = (22)-1/2 exp( -(log(x) - )2/ 22) / x for positive x. Note that and 2are not the mean and variance of the distribution.Normal : f(x) = (2 2)-1/2 exp( - ½(x - )/)2 ) for all x.Beta: f(x) = ( + ) x-1(1 - x)-1 / () () for
7、 0 x 1.Standard normal: f(x) = (2)-1/2 exp( -x2/2) for all x.Chi-squared: f(x) = x-/2-1 exp(-x/2) / (/2) 2/2 for positive x. The parameter is called the degrees of freedom.Gamma: f(x) = - x-1 exp(-x/) / () for positive x. The parameter is called the shape and is the scale.Uniform: f(x) = 1 for 0 x 1
8、.Cauchy: f(x) = /( (x - )2 + 2) ) for all x. Note that and are location and scale parameters. The Cauchy distribution has no mean or variance.Snedecor F: f(x) is proportional to x(1 - 2)/2 / (1 + (1/2) x)(1 + 2)/2 for positive x.Exponential: f(x) = exp(-x/)/ for positive x. The parameter is the mean
9、.Student t: f(x) is proportional to (1 + (x2/)-( + 1)/2 for positive x. The parameter is called the degrees of freedom.Weibull: f(x) = (/) x-1 exp(- x/) for positive x. The parameter is the shape and is the scale.Double exponential : f(x) = exp(-|x-|/) / 2 for all x. The parameter is the location an
10、d mean; is the scale.For comparison, see distribution parameterizations in R/S-PLUS and Mathematica.In all statements about two random variables, the random variables are implicitly independent.Geometric / negative binomial: If each Xi is geometric random variable with probability of success p then
11、the sum of n Xi's is a negative binomial random variable with parameters n and p.Negative binomial / geometric: A negative binomial distribution with r = 1 is a geometric distribution.Negative binomial / Poisson: If X has a negative binomial random variable with r large, p near 1, and r(1-p) = ,
12、 then FX FY where Y is a Poisson random variable with mean .Beta-binomial / discrete uniform: A beta-binomial (n, 1, 1) random variable is a discrete uniform random variable over the values 0 . n.Beta-binomial / binomial: Let X be a beta-binomial random variable with parameters (n, , ). Let p = /( +
13、 ) and suppose + is large. If Y is a binomial(n, p) random variable then FX FY.Hypergeometric / binomial: The difference between a hypergeometric distribution and a binomial distribution is the difference between sampling without replacement and sampling with replacement. As the population size incr
14、eases relative to the sample size, the difference becomes negligible.Geometric / geometric: If X1 and X2 are geometric random variables with probability of success p1 and p2 respectively, then min(X1, X2) is a geometric random variable with probability of success p = p1 + p2 - p1 p2. The relationshi
15、p is simpler in terms of failure probabilities: q = q1 q2.Poisson / Poisson: If X1 and X2 are Poisson random variables with means 1 and 2respectively, then X1 + X2 is a Poisson random variable with mean 1 + 2.Binomial / Poisson: If X is a binomial(n, p) random variable and Y is a Poisson(np) distrib
16、ution then P(X = n) P(Y = n) if n is large and np is small. For more information, see Poisson approximation to binomial.Binomial / Bernoulli: If X is a binomial(n, p) random variable with n = 1, X is a Bernoulli(p) random variable.Bernoulli / Binomial: The sum of n Bernoulli(p) random variables is a
17、 binomial(n, p) random variable.Poisson / normal: If X is a Poisson random variable with large mean and Y is a normal distribution with the same mean and variance as X, then for integers j and k, P(j X k) P(j - 1/2 Y k + 1/2). For more information, see normal approximation to Poisson.Binomial / norm
18、al: If X is a binomial(n, p) random variable and Y is a normal random variable with the same mean and variance as X, i.e. np and np(1-p), then for integers j and k, P(j X k) P(j - 1/2 Y k + 1/2). The approximation is better when p 0.5 and when n is large. For more information, see normal approximati
19、on to binomial.Lognormal / lognormal: If X1 and X2 are lognormal random variables with parameters (1, 12) and (2, 22) respectively, then X1 X2 is a lognormal random variable with parameters (1 + 2, 12 + 22).Normal / lognormal: If X is a normal (, 2) random variable then eX is a lognormal (, 2) rando
20、m variable. Conversely, if X is a lognormal (, 2) random variable then log X is a normal (, 2) random variable.Beta / normal: If X is a beta random variable with parameters and equal and large, FX FY where Y is a normal random variable with the same mean and variance as X, i.e. mean /( + ) and varia
21、nce /(+)2( + + 1). For more information, seenormal approximation to beta.Normal / standard normal: If X is a normal(, 2) random variable then (X - )/ is a standard normal random variable. Conversely, If X is a normal(0,1) random variable then X + is a normal (, 2) random variable.Normal / normal: If
22、 X1 is a normal (1, 12) random variable and X2 is a normal (2, 22) random variable, then X1 + X2 is a normal (1 + 2, 12 + 22) random variable.Gamma / normal: If X is a gamma(, ) random variable and Y is a normal random variable with the same mean and variance as X, then FX FY if the shape parameter
23、is large relative to the scale parameter . For more information, see normal approximation to gamma.Gamma / beta: If X1 is gamma(1, 1) random variable and X2 is a gamma (2, 1) random variable then X1/(X1 + X2) is a beta(1, 2) random variable. More generally, if X1 is gamma(1, 1) random variable and X
24、2 is gamma(2, 2) random variable then 2 X1/(2 X1 + 1 X2) is a beta(1, 2) random variable.Beta / uniform: A beta random variable with parameters = = 1 is a uniform random variable.Chi-squared / chi-squared: If X1 and X2 are chi-squared random variables with 1 and 2 degrees of freedom respectively, th
25、en X1 + X2 is a chi-squared random variable with 1 + 2 degrees of freedom.Standard normal / chi-squared: The square of a standard normal random variable has a chi-squared distribution with one degree of freedom. The sum of the squares of n standard normal random variables is has a chi-squared distri
26、bution with n degrees of freedom.Gamma / chi-squared: If X is a gamma (, ) random variable with = /2 and = 2, then X is a chi-squared random variable with degrees of freedom.Cauchy / standard normal: If X and Y are standard normal random variables, X/Y is a Cauchy(0,1) random variable.Student t / st
27、andard normal: If X is a t random variable with a large number of degrees of freedom then FX FY where Y is a standard normal random variable. For more information, see normal approximation to t.Snedecor F / chi-squared: If X is an F(, ) random variable with large, then X is approximately distributed
28、 as a chi-squared random variable with degrees of freedom.Chi-squared / Snedecor F: If X1 and X2 are chi-squared random variables with 1 and 2 degrees of freedom respectively, then (X1/1)/(X2/2) is an F(1, 2) random variable.Chi-squared / exponential: A chi-squared distribution with 2 degrees of fre
29、edom is an exponential distribution with mean 2.Exponential / chi-squared: An exponential random variable with mean 2 is a chi-squared random variable with two degrees of freedom.Gamma / exponential: The sum of n exponential() random variables is a gamma(n, ) random variable.Exponential / gamma: A g
30、amma distribution with shape parameter = 1 and scale parameter is an exponential() distribution.Exponential / uniform: If X is an exponential random variable with mean , then exp(-X/) is a uniform random variable. More generally, sticking any random variable into its CDF yields a uniform random vari
31、able.Uniform / exponential: If X is a uniform random variable, - log X is an exponential random variable with mean . More generally, applying the inverse CDF of any random variable X to a uniform random variable creates a variable with the same distribution as X.Cauchy reciprocal: If X is a Cauchy (, ) random variable, then 1/X is a Cauchy (/c, /c) random variable where c = 2 + 2.Cauchy sum: If X1 is a Cauchy (1, 1) random variable and X2 is a Cauchy (2, 2), then X1 + X2 is a Cauchy (1 + 2, 1 + 2) random vari
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算流体力学SOD激波管
- 设备维修协议书范文
- 表里的生物教案
- 江苏省盐城市射阳中学2025届高三下学期全真模拟(4)生物试卷(有答案)
- 财务会计实习心得(15篇)
- 表526班组安全技术交底表样板
- 广东省部分学校2024-2025学年高一下学期6月月考历史试题
- 幼儿园《春天的秘密》教学课件
- 财务会计沙盘实训心得体会5篇
- 民航地勤通 用服务培训教学课件
- 清华强基化学试题
- 2024-2030年中国机器人关节模组行业市场竞争态势及前景战略研判报告
- 实验室仪器设备等采购项目培训方案
- 三江学院辅导员考试试题2024
- UASB+SBR处理果汁废水设计说明书及图纸
- 华图教育:2024年国考面试白皮书
- 2024年海港区社区工作者招聘笔试冲刺题(带答案解析)
- 国开2024春专科《高等数学基础》形考任务1-4试题及答案
- T-JSIA 0002-2022 能源大数据数据目录指南
- 2024高校院长述职报告
- 化工催化与催化反应工程
评论
0/150
提交评论