光电效应测普朗克常数思考题汇总_第1页
光电效应测普朗克常数思考题汇总_第2页
光电效应测普朗克常数思考题汇总_第3页
光电效应测普朗克常数思考题汇总_第4页
光电效应测普朗克常数思考题汇总_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、、光电效应的定义电子在光的作用下从某些物质表面发射出来的现象称为光电效应。逸出来的 电子称为光电子。光电效应分为内光电效应和外光电效应。内光电效应是指被光激发所产生的 载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生电动势的现象。内光电效应又可分为光电导效应和光生伏特效应。外光电效 应是指被光激发产生的电子逸出物质表面,形成真空中的电子的现象。单光子的光电效应是指某一时刻物质表面的每个电子只吸收一个光子,这也 是通常所说的光电效应。如果单位体积内同时相互作用的能量子的数目大到使得 发射光的能量子可以从几个入射能量子中取得能量, 即一个电子可以同时吸收两 个及两个以上的

2、光子,就称为多光子的光电效应。在此情况下,光电效应的规律 有相应的变化:1.光电流与入射光强的n次幕成正比,而不限于线性关系;2.入射光强决定能否产生n光子光电效应,由推广的爱因斯坦光电效应方程Emax = nhv-A可知,它对光电子的最大动能是有影响的;3.红限(极限频率)已经失去原有的意义,在原来单光子的光电效应下, 钠、金、银、钨、镍等需用绿蓝光(甚至紫外光)才能产生光电效应,现在红色(甚至红外)的激光都能使这些金属产生光电效应。电光效应是指将物质置于电场中时,物质的光学性质发生变化的现象。比如某些各向同性的透明物质在电场作用下显示出光学各向异性,物质的折射率因外 加电场而发生变化。电光

3、效应包括泡克耳斯效应和克尔效应。二、光电效应可以测普朗克常数的原理爱因斯坦光电效应方程为1 2 ,(1)hv = mvo +A2式中,A为金属的逸出功,1mv2为光电子获得的初始动能。2根据该式,入射到金属表面的光频率越高,逸出的光电子动能越大,所以即使光电管阳极电势低于阴极电势时也会有光电子到达阳极形成光电流,直至两极 电势差低于截止电压,光电流才为零。此时有关系eUo1 2=mvo2将(2)式代入(1)式可得eUo=hv AUoh A=V 一e e上式表明截止电压Uo是入射光频率的线性函数,直线斜率k = h/e。只要用实验方法得出不同频率对应的截止电压, 求出直线斜率,就可以算出普朗克常

4、 数ho 三、普朗克常数的重要性1900年普朗克为了解释黑体辐射实验,引入了能量交换量子化的假说:。其中普朗克常数h的意义是,量子化的量度,即它是不连续性(分立性) 程度的量度单位。普朗克常数的重要性如下。1. 普朗克常数是量子力学的基石与灵魂纵观量子理论,普朗克常数h是其基石与灵魂。只有与它携手,才能跨入量 子物理的大门。只要跨入量子理论的大门,就随处可以看到它的身影。从经典物 理到量子物理,这是质的飞跃。在发生这种质的飞跃中,普朗克常数 h起到了至 关重要的作用。量子力学是诞生于二十世纪的伟大理论, 它与相对论共同构成了 新物理学的辉煌。伴随着量子论的建立,普朗克常数h登上了现代物理学的舞

5、台, 并从此成为量子理论的基石。可以设想,如果没有普朗克常数 h,量子力学是无法建立的。无论是海森堡、狄拉克创立的矩阵形式的量子力学,还是德布罗意、 薛定谔创立的波动形式的量子力学,普朗克常数都起到了基石与灵魂的作用。1925年,德国物理学家海森堡根据“原子理论应当基于可观测量”的思想, 指出与物理学可观测量密切相关的在于两个玻尔轨道,而不是一个轨道。如果每 个可观测量与两个因素有关,要将两个因素决定的某种性质的一组量整体表述出 来,这正是数学中的矩阵。将物理学中的可观测量作为矩阵中的元素, 将每个元 素与两个轨道(确切地说是两种状态)相联系,从而建立一个力学变量与一个矩 阵的关系,这正是海森

6、堡建立描述微观粒子行为的矩阵力学的基本思想。矩阵运算不满足乘法交换律。然而,通常的动力学变量却不具备这一性质。要将矩阵力学与已有的动力学理论相协调,必须找到它们之间的变换关系。奇妙要将哈密顿形式的力学方程中出现的泊松括号作如下变换a,bT aba2;i的是此前一百多年哈密顿建立的动力学方程对此可以发挥作用。海森堡发现,只ih所得到的动力学方程则服从非交换性。 这就是说,有了上述变换,一切已有的动 力学模型都能得到对应的海森堡矩阵力学模型。按照哈密顿动力学理论,任何一个动力学变量 U有如下方程Jh】dtH是哈密顿力学理论中的总能量。结合泊松括号的变换,可以得到du uH -Hu=2兀dt ih这

7、样就建立了所有动力学方程与海森堡矩阵力学的对应关系。由此可见,海森堡是通过泊松括号的变换将普朗克常数h引入,从而建立了矩阵形式的量子力学理论。在这种变换中普朗克常数 h起了至关重要的作用。作为另一种形式的量子力学理论是同年奥地利物理学家薛定谔在德布罗意 物质波理论基础上建立起来的波动力学。德布罗意提出的波函数概念建立了波与 粒子的联系。按照德布罗意的思想,与微观粒子状态想联系的是波函数,波函数2屮(x,y,z,t)模的平方屮(x, y, z,t)与粒子t时刻出现在(x, y,z)处的几率相对应。然而,德布罗意的理论仅仅适用于不受任何力作用的自由粒子,尚不是一种普遍的 理论。薛定谔接受了德布罗意

8、的思想,研究了电场、磁场对粒子作用下的普遍情 况,从而发展了这一理论。在薛定谔所建立的波动力学理论中, 一个关键性的环 节是引入了算符对波函数 屮(x,y,乙t)的作用。引入动量算符P与能量算符EL ih dE T2兀Ct从而得到波函数随时间变化的规律,即薛定谔方程h2h+u(r)空这样就建立了波动形式的量子力学基本方程。由此可见,薛定谔是通过算符将普朗克常数 h引入,从而建立波动形式量子 力学理论的。在这种变换中,h仍然起了至关重要的作用。从本质上讲,海森堡的矩阵力学与薛定谔的波动力学是等价的。只是处理问 题的方式不同。无论是海森堡通过泊松括号的变换,还是薛定谔通过算符的作用, 最终都是巧妙

9、地将普朗克常数h引入才建立量子力学理论的。无论何种形式的量 子力学理论,普朗克常数h都起到了基石与灵魂的作用。2. 普朗克常数是量子概念的基准普朗克常数h的量纲是(能量X时间),这正是作用量的量纲。这说明h是作 用的最小单元,因此h也称作“作用量子”。无论是普朗克的能量子,还是爱因 斯坦的光量子,最小能量与频率之比总要等于自然常数由于量子力学的诞生,产生了诸多与经典物理学完全不同的量子概念。 这些 量子概念都与普朗克常数h密切相关。h成为区分经典物理与量子物理的基准。1 ) h是不确定度的基准作为量子理论的一条基本原理是海森堡于1927年建立的不确定度原理。不 确定度原理指出:“不能以任意高的

10、精确度同时测量粒子某些成对的物理性质。”h为基准应用量子力学的理论可以证明,凡是乘积具有普朗克常数h量纲的成对物理性质的。如粒子动量与坐标,能量与时间的不确定度关系是我们所熟知的MPx h都不能以任意高的精确度同时确定。而这种精确度正是以普朗克常数4兀WE 上4兀以h为基准,应用不确定度关系可以对微观粒子物理量的不确定程度作出估 计,从而决定是运用经典力学处理,还是运用量子力学方法处理。如电子在数千 伏电压加速下的速度约为107m/s,速度的不确定度约为lOm/s。 107LI 10=电子的运动可视为确定的,可用经典力学方法处理。而电子在原子中的运动速度 约为106m/s,原子的线度约为10-

11、10m,由不确定度关系可知,速度的不确定量约 为106m/s,这说明电子在原子中的运动并没有确定的轨道,不能用经典力学处 理,须用量子力学方法处理。2) h是波粒二象性的基准波-粒二象性是微观粒子的基本属性。微观粒子的行为是以波动性为主要特征,还是以粒子性为主要特征,依然是以普朗克常数h为基准来判定。在粒子物理学中,微观粒子的动量公式、能量公式是寓意深刻的。动量公式为能量公式为动量P与能量E是典型的描述粒子行为的物理量,波长 Z与频率V是典型的描述波动行为的物理量。将描述波动行为的物理量与描述粒子行为的物理量用同一个公式相联系,这正寓意了波粒二象性。而联系二者的正是普朗克常数h,这的确是神来之

12、笔。根据上述公式可以了解动量为P、能量为E的粒子的波长与频率,结合相应的物理过程自然可以判断是粒子性呈主要特征,还是波动性呈主要 特征。3)h是量子化条件的限度量子化条件是量子力学的基本特征。继普朗克提出能量量子化条件之后,1913年玻尔提出的原子理论是富有创造性的。玻尔在描述原子内电子的运动时,创造性地引入量子化条件曾被狄拉克誉为人类超越经典理论所迈出的“最伟大的步”。虽然玻尔的理论并非自然的量子力学理论,但他最先将卢瑟福的原子核 式模型与普朗克的量子论相结合,创造性地提出了原子内电子的能级条件与电子 运动的轨道角动量量子化条件。玻尔于 1913年7月在哲学杂志上以“论原 子和分子结构”为题

13、,发表了他的能级假说:“原子只能具有分立的能量值,能 量值的改变与发射或吸收能量子 E = hv有关。”并提出了原子内电子的跃迁条件 与轨道角动量的量子化条件En-Em =nm(门=1,2,3, |)由此可见,在玻尔的原子理论中,量子化条件是十分重要的。而这种量子化条件依然是以普朗克常数h为基准的。按照量子力学的理论,微观粒子的状态须受到量子化条件的制约。1925 年,泡利应用量子态、量子数的概念提出了著名的不相容原理:“在一个原子系统内 不可能有两个或两个以上的电子具有相同的状态。”即原子内的电子不能具有完 全相同的量子数。这一原理成为微观粒子状态的客观描述。 如在原子中,不仅原 子能量是量

14、子化的,诸如电子轨道角动量、轨道角动量的空间取向、自旋角动量 等物理量也是量子化的。轨道角动量量子化条件L = Jl (I + 1)衣轨道角动量的空间取向量子化条件Lz自旋角动量的空间取向量子化条件不仅描述原子、电子等微观粒子的行为须用到量子化条件,在超导现象中, 磁通量也须用到量子化条件。对于非超导体,环形电流在环内的磁通量可以取任 意值。然而,对于超导体,环形电流在环内的磁通量却不可以取任意值。因为超 导电流在环内流动时,要求波函数的相位须是 2兀的整数倍。由此可见,量子化条件成为量子理论的重要特征。而所有的量子化条件须以 普朗克常数h为基准。3. 普朗克常数是一个神奇的常数c、电子电纵观

15、物理学中的基本常数,普朗克常数 h是最为神奇的。在物理学基本常数中,有些是通过实验直接观测发现的,如光速 量e、真空磁导率巴、真空电容率0等,也有一些是在建立相关定律、定理时被 引入,或间接导出的,如万有引力恒量G、阿伏加德罗常数Na、玻尔兹曼常数K 等。无论是通过实验直接发现的常数,还是建立相关定律引入、导出的常数,通 常是容易被理解、接受的,因为我们对这类常数容易形成感性认识。而普朗克常 数h则是在事先没有任何感性认识,确切地说是在没有任何思想准备的情况下, 完全凭着人的创造性智慧偶然发现的。 然而,它却是物理学中一个实实在在的基 本常数。1900年10月,德国物理学家普朗克在寻找用内插法

16、得到的黑体辐射公式的“在理论依据过程中,其中最具根本性意义的是引入了能量不连续的量子思想。整个计算中最重要的一点是认为 E是由一些数目完全确定的、有限而又相等的部分组成的”他最终明白,只有辐射能量 E与辐射频率之比是一个自然常数h的整数倍时才能得到正确的辐射公式。普朗克正是凭着坚韧的毅力与创造性思维发现了这一隐藏在茫茫自然中的物理学基本常数h。截止目前,h的公认值是 6.626176x10 24j s.虽然发现h后人们对h值作过多次修正,但其数量级10始终确定。如此之小却不为零的常数划开了经典物理与量子物理的分界线。正如著 名物理学家金斯曾经评论说:“虽然h的数值很小,但是我们应当承认它是关系

17、 到保证宇宙存在的。如果说h严格地等于零,那么宇宙间的物质能量将会在十亿分之一秒的时间内全部变成辐射禁止发射任何小于Z的辐射的量子论,实际上是禁止了除了具有特别大量的能可供发射的那些原子以外的任何发射。”随着普朗克常数h作为物理学基本常数地位的确立,普朗克本人也认识到了 这一基本常数的重要性。最初,当人们试图从量纲的角度考虑描述原子大小时, 用电子的电量e、电子的质量m、电子的运动速度V将原子的半径表示为2a =A二(A为常数)mv如此的组合虽然有长度的量纲,但这种组合显然是错误的。因为上式中的a、v可以取任意值,这与观测结果不符。普朗克在发现普朗克常数h后,立即意识到可以引入普朗克常数h来表

18、示原子的大小。依然从量纲分析,他所给出的公式岛22 唇e / C2a = = (-7)me mc e我们注意到,普朗克在将普朗克常数h引入的同时,也将与相对论有关的光速c引 入到公式中,而普朗克常数h、光速c、电子电量e的组合2e恰恰是原子精细结构常数a的倒数137.03 (高斯制单位)。如此计算得到的原子 大小为0.5x100m,这与实际相吻合。1912年普朗克用微观领域的基本常数普朗克常数 h、宏观领域的基本常数万有引力常数G、宇宙常数光速c这三个最重要、最特殊的常数组合,得到了自然界中空间、时间、质量的基本值1fGh Lp = f =4.05d05m Ic丿fGhTP Pp.3*阳卄10

19、%这些基本值分别称之为普朗克空间、 普朗克时间、普朗克质量。令人惊叹的是这些基本值不仅在现代物理学微观领域的研究中发挥了重要作用,而且在宇观领域研究中也发挥了重要作用。普朗克空间、普朗克时间意味着空间、时间并非无限可分,依然存在着最小单元。长度的最小单元是105m、时间的最小单元是,这是空间、时间的量子化,欲观测比105m更小的空间、或记录比103s更短的时间是不可能的,无意义的,105m、10“$正是空间、时间的量子极限。小于普朗克空间,万有引力的作用将失效,小于普朗克时间所有的物理学定律也都失效。在宇宙学问题的研究中发现,发生在约二百亿年前的大爆炸至今弥漫在宇宙中的余辉一一微波背景辐射,其

20、频率分布与普朗克公式有很好的一致。 由普朗克公式得知与微波背景辐射相应的热力学温度是3K ,这正是我们常说的3K背景辐射。按照现代宇宙学理论,我们可以推演发生大爆炸104s之后宇宙的演化,尚不能追溯此前的情形;在空间尺度上我们也只能推演大于105m之后的宇宙膨胀,尚不能了解比此值更小的情形,这是由于量子原理对时空精度限制所决定的。然而,这一时间界限与普朗克时间非常接近,这一空间界限与普朗克空间非常接近。这是一种巧合还是蕴涵着更深层次的意义虽然尚不得而知,但普朗克常数h在物理学前沿研究中的重要地位是显而易见的。成的宇宙是10维的。在这10维中,有6维对应的6个卷曲小环小于h数量级,而另4个是超过

21、h数量级的。而在宇宙中我们人类所能看到的只有4维,即3维空间加1维时间。其余抽象的6维是我们人类所不能看到的。在这里,依然以普朗克常数h为界限。凡此种种使我们有理由相信,普朗克常数h极有可能在最终建立的物理学超统一理论中也占有重要的地位。物理学常数名称符号数值单位真空中光速c2.997 924 58咒108m “s普朗克常数h6.626 068 96(33)M04J S约化普朗克常数fl1.054 571 628(53)x104J 阿伏伽德罗常数Na6.022 141 79(30) X1023moL元电荷e1.602 176 487(40) X。-19C万有引力常数G6.674 28(67)x

22、10-113-2m kg s精细结构常数a1/137. 035 999 679(94)里德伯常数Roc10 973 731.568 527(73)-4 m法拉第常数F9.648 533 99(24)04C mol摩尔气体常数R8. 314 472(15)J rnoL 虻玻耳兹曼常数kB_231.380 650 4(24)x10J*斯特藩-玻耳兹曼常数O5.670 400(40)x10W*3电子质量9.109 382 15(45)天 103kg质子质量mp1.672 621 637(83)x10kg原子质量单位u1.660 538 782(83产 10kg四、光电效应的历史1887年,赫兹在用莱

23、顿瓶放电的实验中,发现电磁波,并确定其传播速度 等于光速。赫兹的实验使麦克斯韦的电磁波理论得到全部验证。正是在这个实验 里,赫兹注意到,当紫外光照在火花隙的负极上,放电就比较容易发生。这是光 电效应的早期征兆。赫兹的发现以论文紫外线对放电的影响发表于 1887年,随即引起了广 泛反响。1888年,德国物理学家霍尔瓦克斯、意大利的里奇和俄国的斯托列托 夫几乎同时作了新的研究,实验表明负电极在光照下(特别是紫外线照射下)会 放出带负电的粒子,形成电流。1889年,爱耳斯特和盖特尔进一步指出,有些金属(如钾、钠、锌、铝)不但对强弧光有光电效应,对普通太阳光也有同样效 应,而另一些金属(如锡、铜、铁)

24、则没有。对于锌板,要加+2.5V电压,才能在光照下保持绝缘。1899年,J.J.汤姆孙测出了光电流的荷质比,计算得光电粒子的荷质比e/m 与阴极射线的荷质比相近,都是1011c/kg的数量级。这就肯定光电流和阴极射线 实质相同,都是高速运动的电子流。原来光电效应就是由于光,特别是紫外光,照射到金属表面使金属内部的自由电子获得更大的动能,因而从金属表面逃逸到 空间的一种现象。不过这只是一种定性解释。要根据经典电磁理论建立定量的光 电效应理论,却遇到了难以克服的困难。1900年,勒纳德为了研究光电子从金属表面逸出时所具有的能量,在电极 间加反向电压,直到使光电流为零,从反向电压的截止值(即截止电压

25、)V,可以推算电子逸出金属表面的最大速度。 勒纳德用不同材料做阴极,用不同光源照 射,发现都对截止电压有影响,唯独改变光的强度对截止电压没有影响。电子逸出金属表面的最大速度与光强无关,这就是勒纳德的新发现。但是这 个结论与经典理论是相矛盾的。 根据经典理论,电子接受光的能量获得动能,应 该是光越强,能量也越大,电子的速度也就越快。和经典理论有抵触的实验事实还不止于此,在勒纳德之前,人们已经遇到了其他矛盾,例如:1.光的频率低于某一临界值时,不论光有多强,也不会产生光电流,可是根据经典理论,应该没 有频率限制;2.光照到金属表面,光电流立即就会产生,可是根据经典理论,能 量总要有一个积累过程。本

26、来这些矛盾正好揭露了经典理论的不足,可是勒纳德却煞费苦心地想出了 一个补救办法,企图在不违反经典理论的前提下,对上述事实作出解释。他在 1902年提出触发假说,假设在电子的发射过程中,光只起触发作用,电子原本 就是以某一速度在原子内部运动,光照到原子上,只要光的频率与电子本身的振 动频率一致,就发生共振,所以光只起打开闸门的作用,闸门一旦打开,电子就 以其自身的速度从原子内部逸走。 他认为,原子里电子的振动频率是特定的,只 有频率合适的光才能起触发作用。他还建议,由此也许可以了解原子内部的结构。勒纳德的触发假说很容易被人们接受,当时颇有影响。1905年,还没有当上专利局二级技术员的爱因斯坦提出

27、了光量子理论和光 电方程。他在论文关于光的产生和转化的一个试探性的观点中,总结了光学发展中微粒说和波动说长期争论的历史, 揭示了经典理论的困境,提出只要把光 的能量看成不是连续分布,而是一份一份地集中在一起,就可以作出合理的解释。爱因斯坦发展了普朗克的能量子概念, 提出了光量子假说,并运用到光的发射和 转化上,很好地解释了光电效应等现象。爱因斯坦的光量子理论没有及时得到人们的理解和支持。这并不是完全是由 于勒纳德的触发假说占有压倒优势,因为不久这一假说即被勒纳德自己的实验驳 倒,而是在于传统观念束缚了人们的思想。 而且他提出截止电压与频率成正比的 线性关系,并没有直接的实验依据,因为测量不同频

28、率下纯粹由光辐射引起的微 弱电流是一件十分困难的事。直到1916年,才由密立根作出了全面的验证。它的实验非常出色,主要是排除了表面的接触电位差、氧化膜的影响,获得了比较好的单色光。他选择了三 种逸出功比较低的材料一一锂、钠、钾作为光阴极,置于特制的真空管中,分别 接受光的照射,同时测其光电流,由此得到截止电压值与对应的频率的直线关系 图,从直线的斜率求出普朗克常数h=6.56X104j s,与普朗克1900年从黑体辐射求得的结果符合甚好。爱因斯坦对密立根光电效应实验作了高度的评价,指 出:“我感激密立根关于光电效应的研究,它第一次判决性地证明了在光的影响 下电子从固体发射与光的振动周期有关,这

29、一量子论的结果是辐射的粒子结构所 特有的性质。”正是由于密立根全面地证实了爱因斯坦的光电方程, 光量子理论才开始得到人们的承认。五、其他可以测普朗克常数的方法1. 利用黑体辐射测定普朗克常数根据普朗克定律,受热表面辐射的能量是量子化的,每一个能量子一一光子 所具有的能量为式中是光子的角频率,=,h表示普朗克常数。由普朗克公式给出黑体辐射强度的频率分布N3B,T)exp(h)/ KbT)-1式中N是常数,T是辐射体的绝对温度,KB是玻耳兹曼常数。只要辐射体 近似于黑体,常数N就与频率和温度无关。因此,在同一频率和不同温度测量 的辐射强度之比为B1 B,T1) exp(也/KbT2)1 exp(h

30、G)/KBT2) =a: B2 B,T2) exp (h/KBT)1 exp (hK/KeTJ这一近似式就是维恩公式。当 :6.504咒1011,它与实验结果符合得很好。式中的单位是rads,而T的单位是K。因此比值h/KB可表示为丄=1ln旦Kbc(1/T1/ T1)B2对普朗克常数和玻耳兹曼常数,知道其中一个,就可以用上式求出另外一个。2. 利用玻尔氢原子理论测定普朗克常数根据玻尔的氢原子理论,原子只能处于能量不连续的定态,各个定态能量的 数值称为能级。当原子从一个定态跃迁到另一个定态时,会发射或吸收一个光子,这个光子的频率取决于这两个能级之差,电子从较高能级Em跃迁到较低能级En 时,发

31、射出一个光子,其频率为V,有加=Em - En有十=,所以AAh= (Em-En)c又根据玻尔的氢原子理论,氢原子的能量状态为13.6E(eV)n由 E-136(eV),E-(eV),贝U4m13.6eVA,11、h 一(匚-Tc 4 m氢原子光谱中同一谱线系是氢原子由各个较高能级向同一低能级跃迁时形 成的一系列光谱线,其中可见光范围内的四条谱线 (a,P,YP)属于巴耳末系,根据上式,只要分别测出氢原子光谱 HwHpHyH#目应的波长 祁闷理,即可 测得h 03. 利用发光二极管测定普朗克常数发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在 P型 半导体和N型半导体之间有一个过渡

32、层,称为P-N结。在某些半导体材料的P -N结加正向电压时,注入的少数载流子与多数载流子复合会把多余的能量以 光的形式释放出来,从而把电能直接转换为光能。P-N结加反向电压时,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二级管叫发光 二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就会发出从紫外到红外不同颜色的光,光的强弱与电流有关。当电流正向通过P-N结,自由电子从N型半导体进入P型半导体,当这些 电子重新组合时,能量被释放,这些能量来自于晶格的振动,主要以光的形式释 放出来。在LED中,能量来源于电池或直流发电机。电子通过二级管时,电场 力对每个电子做功,假设一段时间内,流过二极管有 n个电子,则电场力对电子 做的总功为W =neUe为单个电子电量,U为电源电压。若二极管发出n个光子,其总能量为L , nhcE = nh =式中h为普朗克常数,c为光速,V为释放出的光的频率,k为波长。在不计能量损失的情况下,电场力对电子做的功全部转化为光能,则有.nh

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论