




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章第四章不定积分不定积分例例 xxcossin xsin是是xcos的的原原函函数数. )0(1ln xxxxln是是x1在区间在区间), 0(内的原函数内的原函数.如果在区间如果在区间I内,内,定义:定义:可可导导函函数数)(xF的的即即Ix ,都都有有)()(xfxF 或或dxxfxdF)()( ,那那么么函函数数)(xF就就称称为为)(xf导函数为导函数为)(xf,或或dxxf)(在在区区间间I内内原原函函数数. .一、原函数与不定积分的概念一、原函数与不定积分的概念原函数存在定理:原函数存在定理:如如果果函函数数)(xf在在区区间间I内内连连续续,简言之:简言之:连续函数一定有原函
2、数连续函数一定有原函数.问题:问题:(1) 原函数是否唯一?原函数是否唯一?例例 xxcossin xCxcossin ( 为任意常数)为任意常数)C那么在区间那么在区间I内存在可导函数内存在可导函数)(xF,使使Ix ,都都有有)()(xfxF . .(2) 若不唯一它们之间有什么联系?若不唯一它们之间有什么联系?关于原函数的说明:关于原函数的说明:(1)若)若 ,则对于任意常数,则对于任意常数 ,)()(xfxF CCxF )(都都是是)(xf的的原原函函数数.(2)若)若 和和 都是都是 的原函数,的原函数,)(xF)(xG)(xf则则CxGxF )()(( 为任意常数)为任意常数)C证
3、证 )()()()(xGxFxGxF 0)()( xfxfCxGxF )()(( 为任意常数)为任意常数)C任意常数任意常数积分号积分号被积函数被积函数不定积分的定义:不定积分的定义:在在区区间间I内内,CxFdxxf )()(被积表达式被积表达式积分变量积分变量函函数数)(xf的的带带有有任任意意常常数数项项的的原原函函数数称为称为)(xf在区间在区间I内的内的不不定定积积分分,记记为为 dxxf)(. .例例1 1 求求.5dxx 解解,656xx .665Cxdxx 解解例例2 2 求求.112 dxx ,11arctan2xx .arctan112 Cxdxx例例3 3 设曲线通过点(
4、设曲线通过点(1,2),且其上任一点处的),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程切线斜率等于这点横坐标的两倍,求此曲线方程.解解设曲线方程为设曲线方程为),(xfy 根据题意知根据题意知,2xdxdy 即即)(xf是是x2的的一一个个原原函函数数.,22 Cxxdx,)(2Cxxf 由曲线通过点(由曲线通过点(1,2), 1 C所求曲线方程为所求曲线方程为. 12 xy函函数数)(xf的的原原函函数数的的图图形形称称为为)(xf的的积积分分曲曲线线.显然,求不定积分得到一积分曲线族显然,求不定积分得到一积分曲线族.由不定积分的定义,可知由不定积分的定义,可知 ),()(x
5、fdxxfdxd ,)()(dxxfdxxfd ,)()( CxFdxxF.)()( CxFxdF结论:结论: 微分运算与求不定积分的运算是微分运算与求不定积分的运算是的的.实例实例 xx 11.11Cxdxx 启示启示能否根据求导公式得出积分公式?能否根据求导公式得出积分公式?结论结论既然积分运算和微分运算是互逆的,因既然积分运算和微分运算是互逆的,因此可以根据求导公式得出积分公式此可以根据求导公式得出积分公式.)1( 二、二、 基本积分表基本积分表基基本本积积分分表表 kCkxkdx()1(是常数是常数););1(1)2(1 Cxdxx(3)ln;dxxCx说明:说明: , 0 x,ln
6、Cxxdx )ln(, 0 xx,1)(1xxx ,)ln( Cxxdx,|ln Cxxdx dxx211)4(;arctanCx dxx211)5(;arcsinCx xdxcos)6(;sinCx xdxsin)7(;cosCx xdx2cos)8( xdx2sec;tanCx xdx2sin)9( xdx2csc;cotCx xdxxtansec)10(;secCx xdxxcotcsc)11(;cscCx dxex)12(;Cex dxax)13(;lnCaax xdxsinh)14(;coshCx xdxcosh)15(;sinhCx 例例4 4 求积分求积分.2dxxx 解解dxx
7、x 2dxx 25Cx 125125.7227Cx 根据积分公式(根据积分公式(2)Cxdxx 11 dxxgxf)()()1(;)()( dxxgdxxf证证 dxxgdxxf)()( dxxgdxxf)()().()(xgxf 等式成立等式成立.(此性质可推广到有限多个函数之和的情况)(此性质可推广到有限多个函数之和的情况)三、三、 不定积分的性质不定积分的性质 dxxkf)()2(.)( dxxfk(k是是常常数数,)0 k例例5 5 求积分求积分解解.)1213(22dxxx dxxx)1213(22 dxxdxx 22112113xarctan3 xarcsin2 C 例例6 6 求
8、积分求积分解解.)1(122dxxxxx dxxxxx )1(122dxxxxx )1()1(22dxxx 1112dxxdxx 1112arctanln.xxC例例7 7 求积分求积分解解.)1(21222dxxxx dxxxx )1(21222dxxxxx )1(12222dxxdxx 22111.arctan1Cxx 例例8 8 求积分求积分解解.2cos11 dxx dxx2cos11 dxx1cos2112 dxx2cos121.tan21Cx 说明:说明: 以上几例中的被积函数都需要进行以上几例中的被积函数都需要进行恒等变形,才能使用基本积分表恒等变形,才能使用基本积分表.例例 9
9、 9 已知一曲线已知一曲线)(xfy 在点在点)(,(xfx处的处的切线斜率为切线斜率为xxsinsec2 ,且此曲线与,且此曲线与y轴的交轴的交点为点为)5 , 0(,求此曲线的方程,求此曲线的方程.解解,sinsec2xxdxdy dxxxy sinsec2,costanCxx , 5)0( y, 6 C所求曲线方程为所求曲线方程为. 6costan xxy基本积分表基本积分表(1)不定积分的性质不定积分的性质 原函数的概念:原函数的概念:)()(xfxF 不定积分的概念:不定积分的概念: CxFdxxf)()(求微分与求积分的互逆关系求微分与求积分的互逆关系四、四、 小结小结思考题思考题符号函数符号函数 0, 10, 00, 1sgn)(xxxxxf在在 内是否存在原函数?为什内是否存在原函数?为什么?么?),( 思考题解答思考题解答不存在不存在.假设有原函数假设有原函数)(xF 0,0,0,)(xCxxCxCxxF但但)(xF在在0 x处处不不可可微微,故假设错误故假设错误所以所以 在在 内不存在原函数内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国便携式超声波流量计行业发展监测及投资战略研究报告
- 2025年中国成品糖行业市场深度评估及投资策略咨询报告
- 湖水环境综合治理工程可行性研究报告银行贷款项目
- 以问题为钥开启小学数学教学新征程:问题解决导向式教学模式的深度剖析与实践探索
- 以错为鉴:数学错题管理驱动有效学习的路径探究
- 2025年中国麦芽糊精行业市场深度研究及发展趋势预测报告
- 以趣为引以乐促写:初中快乐作文教学的创新与实践
- 中国翻盖护罩行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 以设计思维为翼拓展美术鉴赏课程新维度
- 金属制品、设备修理项目风险分析和评估报告
- 2025年广东省高考生物真题(解析版)
- (2025)公文写作考试题库(含答案)
- 蓄电池安装工程分项工程质量验收记录表
- (完整版)幼儿园大班升一年级数学测试卷
- 术中压力性损伤风险评估量表解读
- B2B2C多用户商城平台详解
- 剑桥少儿英语一级下册Unit2PPT课件
- ASMEB16.5标准法兰尺寸表
- GB∕T 21437.2-2021 道路车辆 电气电子部件对传导和耦合引起的电骚扰试验方法 第2部分:沿电源线的电瞬态传导发射和抗扰性
- (新版)传染病防治监督试题库(含答案)
- 水污染控制工程:气浮
评论
0/150
提交评论