二维梁单元的有限元分析_第1页
二维梁单元的有限元分析_第2页
二维梁单元的有限元分析_第3页
二维梁单元的有限元分析_第4页
二维梁单元的有限元分析_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Problem Description: Determine the nodal deflections, reaction forces, and stress for the truss system shown below (E = 200GPa, A = 3250mm2) Important:        · Convert all dimensions and forces into SI units.· You can either build your model by

2、 using ABQUS/CAE or directly write your input file. Submit the input file according to the temp format.· Run the job twice by with or without considering geometric nonlinearity and do a comparison.· List the results of the analysis and plot the deformed shape.PART 1:Without considering geo

3、metric nonlinearity, we can get the deformed shape of 2D Truss Structure as follow : Fig 1 The deformed shape of 2D Truss Structure without geometric nonlinearityWe get the result of analysis of 2D Truss Structure without nonlinearity by using ABQUS/CAE. The reaction forces for truss system are summ

4、arized in table 1.Point numberRF. Magnitude(N)RF. RF1(N)RF. RF2(N)1300013188582233333200030004000500060007318498-188582256667Table 1 The reaction forces for truss system without geometric nonlinearity The displacements and the Mises stresses for truss system are showed in table 2.Point numberU. Magn

5、itude(m)U. U1(m)U. U2(m)S. Mises(Pa)1300.013E-33-188.582E-33-233.333E-3349.7391E+0623.00917E-031.51695E-03-2.59884E-0382.8975E+0635.37825E-03-298.416E-06-5.36996E-0334.1952E+0645.72896E-0324.868E-06-5.7289E-0347.664E+0655.79069E-03223.812E-06-5.78637E-0335.2315E+0663.25786E-03-1.61642E-03-2.82858E-0

6、391.1872E+067318.498E-33188.582E-33-5.36996E-0351.8117E+06Table 2 The Mises stress and displacement for truss system without geometric nonlinearityPRAT2:With considering geometric nonlinearity, we can get the deformed shape of 2D Truss Structure as follow :Fig 2 The deformed shape of 2D Truss Struct

7、ure with geometric nonlinearityThe reaction forces for truss system with geometric nonlinearity are summarized in table 3. Point numberRF. Magnitude(N)RF. RF1(N)RF. RF2(N)1299.881E+03188.372E+03233.333E+03200030004000500060007318.374E+03-188.372E+03256.667E+03Table 3 The reaction forces for truss sy

8、stem with geometric nonlinearityThe displacements and Mises stresses for truss system are showed in table 4.Point numberU. Magnitude(m)U. U1(m)U. U2(m)S. Mises(Pa)153.5032E-33-53.5031E-33-101.216E-3649.6786E+0623.01189E-031.51851E-03-2.60108E-0382.9515E+0635.38337E-03-299.721E-06-5.37502E-0334.2471E

9、+0645.73647E-0324.8903E-06-5.73642E-0347.6725E+0655.79542E-03225.597E-065.79103E-0335.2385E+0663.26007E-03-1.61749E-03-2.8305E-0391.235E+067296.734E-33148.798E-33-256.73E-3351.7433E+06Table 4 The Mises stress and displacements for truss system with geometric nonlinearityWe can find lots of differences between the results without considering geometric nonlinearity and the results with considering geometric nonlinearity. The largest difference of all is the displacement. There are distinctly exterior difference between Fig 1 and Fig 2. The result without considering geometric nonlinea

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论