(完整版)中考常考的旋转、折叠、翻转等几种经典类型_第1页
(完整版)中考常考的旋转、折叠、翻转等几种经典类型_第2页
(完整版)中考常考的旋转、折叠、翻转等几种经典类型_第3页
(完整版)中考常考的旋转、折叠、翻转等几种经典类型_第4页
(完整版)中考常考的旋转、折叠、翻转等几种经典类型_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考常考题型(一)正三角形类型在正 ABC中,P为氐ABC内一点,将 ABP绕A点按逆时针方向旋转 60,使得 AB与AC 重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个 PCP中,此时 PAP也为正三角形。例 1.如图:(1-1):设 P是等边 ABC内的一点,PA=3, PB=4, PC=5,Z APB 的度数是.简解=在的外RJ,作ZBAFf-ZCAP,且民 尸艮 则厶凹CAP.易证APF为正三角形,PRP为惡-.- z APBZ APPr+ z J5,PB=60: + 90t=lBOa-18(二)正方形类型在正方形ABCD中,P为正

2、方形ABCD内一点,将 ABP绕B点按顺时针方向 旋转900,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC 三条线段集中于图(2-1-b)中的 CPP中,此时 BPP为等腰直角三角形。例2 .如图(2-1): P是正方形ABCD内一点,点P到正方形的三个顶点 A、B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。=FfAAED 使土AE二AP 毎吉 EP,则厶ADE箜一YBP同祥方祛,作且有dfcMb吃a易证AEAP为等腰直角三甬形.又VAP-1/.PE=72 同理,PF二3厲 屮VzEDAZPBA, ZFDOZPBC 心又二 ZFB/L-hZ

3、PBC=二 Z EDFZ EDAZ FDC+ZADC= 9+90士LEtfV点氏D. F在一条直线上*/. EF=ED+DF=2+2=4,门在 AEPF 中.EF=4* EP二 Ji, IT二3 忑丄由勾定理的逆定理,可知EPF为RtA.(三)等腰直角三角形类型在等腰直角三角形 ABC中,/ C=Rt/ , P为 ABC内一点,将 APC绕C点按逆时针方向旋转900,使得AC与 BC重合。经过这样旋转变化,在图(3-1-b) 中的一个厶P CP为等腰直角三角形。ffl (3-1-a)ffl (3-1-b) 3例 3如图,在 ABC中, / ACB =90, BC=AC , P 为氐 ABC内一

4、点,且 PA=3,PB=1, PC=2。求/ BPC 的度数。B简解在RIAABC的外侧,作zBC-zACP,且CPF=CP2,连结PF”则ABC?AACP.易证RMCPF为等腰直角三角形,在 APBP 中,B=3, BP=b P=2j2 3 *由勾股定理的逆定理可知,AP PB为为RtA , z PB90v_2BPC-CP+z PB=45s490:=135=+平移、旋转和翻折是几何变换中的二种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在 新的图形中分析有关图形之间的关系这类实体的特点是:结论开放, 注重考查学生的猜想、探索能力;便于与其它知识相

5、联系,解题灵活多 变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下, 近几年中考加大了这方面的考察力度,特别是2006年中考,这一部分的分值比前两年大幅度提高。为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移, 旋转和翻折的知识来解决相关的问题, 下面以近几年中考题为例说明其 解法,供大家参考。一.平移、旋转平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的 图形运动称为平移. 一定的方向”称为平移方向,一定的距离”称为平移 距离。平移特征:图形平移时,图形中的每一点的平移方向都相同,平移 距离都相等。旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度 成为

6、与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫 做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于 图形的旋转角。例1. ( 2006年绵阳市中考试题)如图,将 AABC绕顶点A顺时针旋转60o后得到AABC,且C为BC的中点,贝U CD:DB丄()A. 1:2 B . 1: C . 1: D . 1:3分析:由于AABC是AABC绕顶点A顺时针旋转60o后得到的, 所以,旋转角/ CAC =60 AABC坐AABC, AC 丄AC,/ CAC =60 AACC 是等边三角形 , AC丄AC.又C为BC的中点, BC =CC,易得AABC

7、、AABC是含30o角的直角三角形,从而AACD也是含30o角的直角三角形.CI=-AC, AC =-B C ,C 故=224点评:本例考查灵活运用旋转前后两个图形是全等的性质、等边三角形的判断和含30 o角的直角三角形的性质的能力,解题的关键是发现AAC C是等边三角形.二、翻折翻折:翻折是指把一个图形按某一直线翻折 180o后所形成的新的 图形的变化。翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去, 如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称, 这条直线就是对称轴 解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。翻折在三大图形运动中是比较重要的

8、,考查得较多另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家例2.(2006年江苏省宿迁市)如图,将矩形 ABCD沿AE折叠,若/BAD = 30 则/ AED 等于()A. 30B. 45C. 60D. 75分析:由已知条件/BAD = 30 易得/ DAD =6Qo 又t D、D 关于 AE对称,/ EAD= / EAD =30 / AED= / AED =60故选C点评:本例考查灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现/ EAD二/ EAD; / AED二/AED 例艮(2凹6年南

9、京市)己知矩AB=2, AD=lr将纸片折叠”使顶点A与辿ED上的点E合,如果折痕F盼别与AIR AB交与直人G如图5 肿=二q3求DE的长匚*解在矩形ABCD中,人口AD=1, AF=- , Z D=90. d仃JrM 1根据轴对郁的甘质,EF=AT=3 DF-AD-Ar=-3在M)EF中DE彳(討(齐普点评:图形沿某条线折叠,这条线就是对称轴,利用轴对称的性质 并借助方程的的知识就能较快得到计算结果。由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数 学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考 查到了.因此在平时抓住这三种运动的特征和基本解题思路来指导我们 的复

10、习,将是一种事半功倍的好方法。平移与旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。题型多以填空题、计算题呈现。在解答此类问题时,我们通常将其转换成全等求解。 根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。例1 如图,直角梯形 ABCD中,AD / BC,AB丄BC,AD=2,BC=3,将腰CD以D为中心,逆时针旋转90至ED,连结AE、CE,则 ADE的面积 是( )A 1 B 2 C 3 D 不能确定分析:解题的关键是求厶ADE的边AD上的高。可先求作直角梯形的高 DF, 想到将 CDF绕

11、D逆时针旋转90至厶EDG,由EG=GF,只要CF的长,就可 以求出 ADE的面积。解:过D做DF丄BC于F,过E做EG丄,交AD的延长线于GvZ B=90, AD / BC四边形ABFD为矩形 FC=BC AD=3 2=1,Z EDC=Z FDC =90Z FDC =Z EDG,又vZ DFC = Z G =90 , ED=CD EDGACDF, EG=CF=1 ADE 的面积二丄1 因此,选择A点评:明确 ADE的边AD上的高的概念不要误写成 DE,作梯形高是常见 的解题方法之一。变式题1:如图,已知 ABC中AB=AC , Z BAC =90。,直角Z EPF的顶 点P是BC中点,两边P

12、E, PF分别交AB、AC于点E、F,给出以下五个结论:C(1) AE=CF (2)/APE= / CPF (3)A EPF是等腰直角三角形(4) EF=AP(5) S四边形aepf= Saabo 2,当/ EPF在厶ABC内绕顶点P旋转时(点E不与A、 B重合)上述结论中始终正确的序号有例2D、E为AB的中点,将 ABC沿线段DE折叠,使点A落在点F处。 若/ B=50。,贝U/ BDF=分析:通过折纸实验,多次尝试,得出结论。解: D、E为AB的中点, DE/ BC,/ ADE= / B=50由折纸实验得:/ ADE= / FDE/ BDF=180/ADE /FDE=180 2X 50 =

13、80点评:几何变换没有可套用的模式,关键是同学们要善于多角度、多层次、 多侧面地思考问题,观察问题、分析问题。变式题2:如图,矩形纸片ABCD,AB=2,/ ADB=30。,将它沿对角线BD折叠(使 ABD和厶EBD落在同一平面内)则A、E两点间的距离为旋转具有以下特征:(1) 图形中的每一点都绕着旋转中心旋转了同样大小的角度;(2) 对应点到旋转中心的距离相等;(3) 对应角、对应线段相等;(4) 图形的形状和大小都不变。利用旋转的特征,可巧妙解决很多数学问题,如一 求线段长例:如图,已知长方形 ABCD的周长为20,AB=4,点E在BC上,且AE 丄 EF, AE=EF,求 CF 的长。【

14、解析】:将 ABE以点E为旋转中心,顺时针旋转 90 ,此时点B旋转到点B处,AE与EF重合,由旋转特征知:BE丄BC , 四边形BECF为长方形,二CE=BF=AB CF+CE二旺+CE二BE+EC二BC=6二 CF二BC-CE=6-4=2二.求角的大小例:如图,在等边 ABC中,点E、D分别为AB BC上的两点,且BE二CD AD与CE交于点M求/ AME的大小。【解析】:因为 BC二AC, / ABCV ACD=60 ,BE二CD,所以以 ABC的中心(等边三角形三条中线的交点)o为旋转中心,将 ADC顺时针旋转120就得到了厶CEB / AME=180 - / AMC=180 -120

15、 =60三.进行几何推理例:如图,点F在正方形ABC啲边BC上,AE平分/ DAF,请说明DE=AF-BF成立的理由数学思想是解数学题的精髓和重要的指导方法,在平移和旋转中的应 用也相当的广泛,一般可以归结为两种思想一一对称的思想和旋转的思 想,具体的分析如下:1、对称的思想:在平移、旋转、对称这些概念中,对称这一概念非 常重要.它包括轴对称、旋转对称、中心对称.对称是一种种要的思想方 法,在解题的应用非常广泛例: 观察图中所给的图案,它可以看成由哪个较基本的图形经过 哪些运动变换产生的?它是不是轴对称图形?旋转对称图形?中心对 称图形?分析:这是一个涉及轴对称平移、旋转的综合性例子。解题思路

16、 主要通过直观观察取得。这个图案较基本的图形是正方形, 一个小正方形沿对角线方向平移 一个对角线长、两个对角线长后得一正方形串,然后在串的轴线上找一 点0为旋转中心,旋转三个90后得到题目中给出的图案,整个过程如 图所示。这个图形是轴对称、旋转对称中心对称图形。方法探究:这里的较基本图形也可以看成线段。一线段经平移、旋转后 得一正方形,然后重复上面的过程。2、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换, 从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。例:如图,正方形 ABCD内一点P,Z PA*/PDA= 15,连结PBPC,请问: PBC是等边三角形吗?为什么?分析:本题关键是说明/ PC亠/PBA= 30,利用条件可以设想将 APD 绕点D逆时针方向旋转90 ,而使A与C重合,此时问题得到解决.解:将厶APD绕点D逆时针旋转90,得厶DP C,再作 DP C 关于DC的轴对称图形 DQC得厶CDQ与 A ADP经过对折后能够重合。 PD=QD/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论