抽象代数基础2.6整环的因子分解教案_第1页
抽象代数基础2.6整环的因子分解教案_第2页
抽象代数基础2.6整环的因子分解教案_第3页
抽象代数基础2.6整环的因子分解教案_第4页
抽象代数基础2.6整环的因子分解教案_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、«抽象代数基础教案授课章节2.6整环的因子分解任课教师 及职称xx教授教学方法 与手段讲授法、板书课时安排6使用教材和 主要参考书抽象代数基础唐忠明编高等教育出版社2006 , 4近世代数杨子胥编高等教育出版社 2000 , 7教学目的与要求:明确单位、相伴、素元、主理想整环、欧式环、唯一分解整环教学重点,难点:主理想整环、唯一分解整环、欧式环之间的关系授课时间第 30次课2教学内容:2.6整环的因子分解定义1 设R是一个整环(1) R中的(乘法)可逆元称为是 R的单位(2) 设a,b R ,若存在c R使a=bc,则称b整除a,记为b| a。(3) 设 a,b R ,若a|b ,

2、ba ,则称a与b相伴。命题1 a与b相伴存在单位 使a b证明: 由 ab , b a 知存在 c, d 使 b=ac, a=bd,于是 a=acd,若 a=0,则 b=ac=0,故 a=b;若a 0,则由a=acd消去a得cd=1,所以c, d为R的单位,因而总存在单位使a b。若有单位 使a b ,则b1a ,所以a| b , b|a ,即a与b相伴。定义2设R是一个整环,(1) 设a R且a 0,则R中的单位及a的相伴元都是a的因子,称为是a的平凡因子,a的非 平凡因子称为a的真因子。(2) 设a R且a 0,若a不是单位且没有非平凡的因子,即a的因子只有单位和 a的相伴元,则称a是既

3、约元。命题2设R是整环,则(1) a是单位(a) =R(2) a|b (b) (a)(3) a与 b相伴(a) = (b)(4) b是a的真因子 (a) (b) R(5) a是既约元(a)是非零的极大主理想,即不存在主理想( b)使(a)(b) R命题3设R是整环,则R的既约元的相伴元也是既约元。证明:设a是既约元,b是a的相伴元,则(a) = (b),于是得证。定义3设R是整环,p R, p 0且p不是单位,如果对任意的a, b属于R,由p ab必有p a或者p b ,则称p是素元。例如:在Z中,素数是素元,Fx中,不可约多项式是素元。命题4设R是整环,p R, p 0且p不是单位,则p是素

4、元(p)是素理想定义3设R是整环,如果 R的每个理想都是主理想,即都可以由一个元素生成,则称R是主理想整环。命题5设R是主理想整环,I是R的非零真理想,则 I是素理想I是极大理想命题6 设R是主理想整环,pR是非零非单位的元素,则p是素元a rp2 pn qq2 qm R,i 1,2, ,n,qi,j 1,2, ,m p是既约兀国自,,an R,证明: 已证, 假设p是既约元,我们来证明(p)是极大理想。设I是R的一个理想使I (p),教学内容:由于R是主理想整环,所以存在 a R使得I= (a),因而存在b R使p=ab,而p是既约元,所以a为单位或者b为单位,若b为单位则(p) = (a)

5、,矛盾,所以a必为单位,从而I= (a) =R,所以 (p)是R的极大理想,从而也是素理想,从而 p是R的素元。定义4设R是整环,假设从R的非零兀的集合 R到非负整数集合有一个映射使得对 a, b R,b 0都存在q,r R使a qb r ,其中r 0或(r)(b) ,(*)则称(R,)是欧式环,简称R是欧式环,简称 R是欧式环,而算式(*)称为欧式除环。定理1欧式环一一定是主理想整环证明:设(R,)是欧式环,I是R的任意一个理想,若I=0,则显然I是主理想。假设I 0,则集合 (a)|a I,a 0非空,且存在最小数,设a I,a 0使得(a)是这个集合中的最小数,则对 b I ,b 0都有

6、(a)(b),下证 I= (a)。对 b I ,由于R是欧式环,所以存在q, r R使b=qa+r,其中r=0或者(r)(a),易证r=0,从而b qa (a),因而I= (a)。所以R是一个主理想整环。定义5设R是一个整环,如果 R满足下列条件(1)(存在性)R中的每个非零非单位的元素都可以表示成一些既约元的乘积的形式:a p1P2pn其中pi,i 1,2, ,n都是既约元(2)(唯一性)若 a PiP2 pn qq2 qm,其中 pi,i 1,2, ,n,qj,j 1,2, ,m 都是既约元,则必有m=n且适当调整顺序后有 pi与qi相伴,则称R是一个唯一分解整环。命题7 R是一个唯一分解

7、整环, p R是非零非单位的元素,则 p是素元 p是既约元定理2主理想整环是唯一分解整环于是,欧式环,主理想整环和唯一分解整环之间的关系是:欧式环 主理想整环 唯一分解整环定义6设R是一个整环,a1,a2, ,an R,d R(1) 如果d|a,i 1,2, ,n,则称d是a1,a2, ,an的一个公因子(2) 如果d是a1,a2, ,an的公因子而且若 d也是a1,a2, ,an的一个公因子则必有 d|d,则称d是a1,a2, , an的一个最大公因子。定理3唯一分解整环中的任意两个元素都有最大公因子命题8设R是一个主理想整环,则 d是a, b的最大公因子(a) + (b) = (d),而且

8、对a, b的任意最大公因子(a, b),存在s,t R使(a, b) =sa+tb证明: 若d是a, b的最大公因子,则 d|a且d |b ,于是(a)(d)且(b)(d),从而 (b) (d)。由于R是主理想整环,所以存在di R使(a) (b) (di),则(a) (di),(b) (di), 即di|a,d2|b,而d是a,b的最大公因子,所以di|d,于是(d)(di),即(d)(a) (b),所以(a) (b) (d)假设(a) (b) (d),则由(a) (d), (b) (d)得 d |a且 d| b。又若 d a且 d | b ,则(a) (d ), ' . . . .(b) (d ),于是(a) (b) (d ),故(d) (d ),则d d ,所以d是a, b的一个最大公因子。由于 (a,b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论