遥感影像解译不确定性的评估与表达_第1页
遥感影像解译不确定性的评估与表达_第2页
遥感影像解译不确定性的评估与表达_第3页
遥感影像解译不确定性的评估与表达_第4页
遥感影像解译不确定性的评估与表达_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、遥感影像解译不确定性的评估与表达摘自遥感数据的不确定性问题 承继成 郭华东 史文中等编著遥感数据的精度评估研究是从 1975 年开始的 (1973 年发射第一个遥感卫星 )。 最早 Hord 和Brooner(1976). Van Genderen 和Lock(1977)及Ginevan(1979)曾提出了 建 立测 试 评 估 地 图的 标 准 和 技 术的 建 议 。 Roslnfield(1982) , Congalton(1983), Aronoff(1985) 对遥感数据精度的评估标准和技术进行了较深入的研究, 以后又有更 多的人参与了该项研究工作。 误差矩阵是主要的方法, 它能很好

2、地表达专题图的精度, 已经成为普遍采用的方法。一、遥感影像解译不确定性评估综述遥感解译有人工目视判读和计算机自动分类处理。在本章中我们主要指计算机自 动分类。造成遥感影像解译不确定性的原因有遥感数据固有的不确定性 (包括地物 波谱的固有的不确定性和遥感影像数据固有的不确定性等)和遥感数据获取、处理、 传输、分类过程造成的误差。因此遥感数据解译过程中的不确定性是客观存在、不可 避免的。任何解译的成果图件在不同程度上都存在着一定的不确定性,符合 “任何人 工模拟产品与客观真实世界之间总是存在一定差异 ”的原理。遥感影像数据的不确定性是普遍存在的。 一些遥感影像的分辨率很低, 经过各种 处理影像分类

3、的可信度尽管有所提高但仍然存在不确定性 ( 表1),一些地物的可信度 仍很低地类TM影像Marr融合影像Brovey融合影像HIS融合影像PCA融合影像城镇建筑50.5082.2561.4975.915839农村居民点52.3360.7254.4861.255487裸地67.7482.8476.8173.5275.88大棚63.3183.7278.6878.2180.38耕地66.7485.40751082.1571.98园地55.8580.7866.5974.1267.14林地54.7574.9164.6365.5762.59水体65.6287.2980.3482.1079.08道路49.5

4、462.5354.1158.9753.83遥感数据分类的不确定性度量方法通常用误差矩阵来度量。从误差矩阵中可 以计算出分类精度的指标,如正确分类比”。另一种指标是由Cohen提出来的Kappa系数,后来经Foody(1992)修正后称为Tau系数。遥感数据分类的专题不确定性是指专题值与其真值的接近程度,其度量随专题 数据类型的不同而不同(Lanter and Veregin,1992。专题数据的类型有两种:分类专 题数据(categorical thematic data)和连续专题数据 (continuous thematic data),也有将 其分为定性数据 (qualitative d

5、ata)和定量数据的(qua ntitative data)。连续数据的不确 定性度量指标与位置不确定性的度量指标相类似,如方差等(Lanter and Veregin,1992; Heuvelink,1993; Goodchild et al,1992)b遥感数据不确定性的度量一般采用基于像元的分类结果评估,其不确定性度量评估流程如图 1 ( Lun etta et al, 1991)。图1基于像元的遥感数据不确定性评估流程图(据Lunetta et al,1991)二、基于采样的检验方法总结现有的文献主要有三种基于实验的检验方法:(1) 对于某一类或全集正确量测的百分比(Rose nfie

6、ld, 1986);(2) 某一置信水平下某一类或全集正确量测的百分比(Aronoff,1985 ; Hord andBroo ner,1976);(3) 基于某些参数的某一类或全 集正确量测的百分比(Greenland et al,1985;Rosenfield and Fitzpatrick-Lins,1986)。以上三种方法适用于各种非连续属性值的精度评估。非连续属性数据的评估可以通过对一组分类结果的评价得以实现。地面真实数据有时也称之为参考数据,通过将量测数据与参考数据的比较我们可以建立一个误差矩阵。该矩阵可以描述某一类别的分类精度或整体分类精度。基于这一矩阵可以对分类精度进行进一步地

7、讨论。本节将集中讨论遥感分类影像的精度评估问题1. 参考数据的采样在基于采样数据的属性不确定性评估方法中 ,采样数据作为误差矩阵或其他统计 分析的输入部分 ,在这个过程中选择适当的采样数据是非常重要的。 有两个因素影响着 采样数据的选择:采样样本的大小及采样数据分布模式。在评估分类遥感影像的分类精度时,采样点的数量是十分重要的。获取地面采样 数据是昂贵的,因此采样点的个数应尽可能减少。另一方面,为了在统计上有意义 ,采样点的数目应尽可能大 ,至少大于某一给定数目 ,例如 30个。人们在采样点个数方面进 行了许多探讨 (Van Genderen and Lock,1977; Rosenfield

8、, 1982; Congalton, 1988; Fukunaga and Haye,s 1989)。另一个重要因素是采样模型。 选择适当的采样点分布方式 ,使所选择的样本可以代 表全部分类的影像是十分重要的。 一个较差的采样可能导致精度评估的偏重 ,使得对精 度的估计过高或过低。 通常使用的采样模式有五种: 简单随机采样 (Cochran,1977); 集群采样(Kish, 1965);分类随机采样(Barrett and Nutt,1979);系统采样(Barreff a nd Nutt, 1979)以及分类系统非一致采样(Berry and Baker,1968)。Con galto n

9、(1988)对不同地区进行了采样模拟,并总结出在各种情况下简单随机采 样与分类随机采样提供最佳采样结果的规律。当采样个数与模式确定之后,即可实施采样,进而生成误差矩阵,依此进一步进 行有关的属性精度评估。2. 误差矩阵误差矩阵,有时也称为混淆矩阵,是一个用于表示分为某一类别的像素个数与地面检验为该类别数的比较阵列。一个误差矩阵的实例见表2。表2中的列通常表示参考数据,而行表示遥感分类的结果。误差矩阵通常用于表示分类的精度,因为它可用于 指出某一类的或整体分类的精度。 此外,用误差矩阵还可以表示出包含与丢失两种误 差。在表2中,A、B、C是三类待分类的类别名称。第一行的数目,如总数52”表示为A

10、的像素中根据实地检查有45个被分为类别A ”,2个像素被分为类别B”,5个像 素被分为C ”。表2误差矩阵实例分类数据地面真实数据行总数ABCA452552B363571C277079列总和507080200根据误差矩阵可以导出若干关于总体分类或对于某一类别分类的精度描述指标分类的总体精度是用误差距阵内对角线元素之和除以总的采样个数来表示的。例如,在表2的例子中,该值为(45+63+70)/200= 89%,即总体分类精度为89%。为描述 对某一类别的分类精度,我们定义了用户精度和生产者精度(Story and Con gait on,1986)。对于类别A的生产者精度是用下列公式计算的,即类

11、别A的正确分类个数除以对于 类别A的总采样个数,即A的列总和。例如在以上的例子中,生产者精度为:45/50=90%。该指标指出了一个地面采样点被正确地分类的概率。事实上,它是对丢失误差 的一个量度,该误差指出了该采样数据中没有被正确分类的百分比。丢失误差是由该 类所在列中非对角线元素之和除以该列总和而得。 例如在以上的例子中,丢失误差为:(3+2)/50=10%。因此,有:生产者精度 + 丢失误差 =100%另一方面,类别A的用户精度定义为:正确分类为A的个数除以分为类别A的总和 (即A所在行的总和)。在以上例子中,该值为 45/52=86.5%。事实上,该指标指出一 个采样分类点表示实际地面

12、真实情况的百分比。用户精度表示了包含误差,A类的包含误差用A所在行的非对角线元素之和除以该行的总和。在以上的实例中,该值为: (2+5)/52=13.5。用户精度与包含误差有以下关系:用户精度 + 包含误差 =100%Chrisman(1986指出,输入GIS中数据应附有一个误差矩阵。这应以原始的误差矩 阵形式表示, 而非由该矩阵导出的一系列参数。 只有这个原始矩阵才能表示出每一类 别的各种精度与误差,用户可根据其自己的要求从中导出新的参数。3. kappa 系数两个最常用的属性精度量测量是二维正态概率和 Kappa 系数。由于二维正态概 率是基于 “正确百分率 ”,因而不能统计出包含与丢失误

13、差。另一方面, Kappa 系数提 供两幅图观测协议的不同量度,而协议是由几率形成的(Congalton and Mead, 1983;Can gait on et al, 1983)。Kappa系数定义为:K=(P0-Pe)/(1-Pe)式中,Po是观测精度估计,而Pe是期望精度估计。一个0.80的Kappa系数可以解释为该分类以80%的程度优于随机地给像素赋类别 值。Kappa系数的优点在于它已经包含了丢失误差和包含误差。一个条件Kappa系数 可以表示对于某一类别的分类精度 (Campbell, 1987;Rosenfield, 1986;Chrisman,1984)。建议Kappa参数

14、成为表示总体属性不确定性的一个标准指数,而条件Kappa参数则成为某一类别精度描述的指标。误差矩阵是一个常用的遥感影像分类不确定性描述模型。为使对分类精度的描述 具有代表性,样本大小及采样模式是两个重要的考虑因素。基于误差矩阵,一系列的 误差指标可以被导出,如用户精度、生产者精度、包含误差、丢失误差等。这些参数 可用于描述某一类或整体分类的精度。 然而, 在某些情况下需要知道每一个像素的不 确定性。以上的误差描述指标不能满足此要求。4. 内部与外部检验确定属性数据的统计质量方法有三种:即演绎法推论、内部检验和外部检验 (Kennedy Smith, 1986)。通常用演绎法推断属性数据质量是利

15、用具有由内部或外部检 验导出的属性质量的量测值。内部检验方法是通过比较若干相互独立的重复观测量, 其平均值被视为 “真值 ”。在质量控制中,内部检验的结果是准确性。另一方面,外部检验是通过将量测值与 “真值”或可以写作 “真值 ”的量进行比较。 外部检验的结果可以满足用户的需求 (Kennedy Smith, 1986),但这种检验不能区分 开各种误差源或过程的误差影响,其结果包含了各种误差的影响。在利用外部检验确定属性的数据质量时,首先要选定一定检查点,可以选择随机 抽样点。 为确使每一类别内均有一定的点被选中为检查点, 人们通常建议使用分类随 机采样方式。Hay(1979)建议对总体至少应

16、选择50100个采样点,而对于每一类至少 应选择 30个采样点。 使用外部检验法确定属性数据质量的过程描述如下 (详细描述见 Hord and Brooner, 1976):(1) 定 义 一 置信 水 平 (例如 99.7%), 从 正态 分布 表 中 查出 此表 所对 应 的 值,即Z 0=3.0。 确定采样个数(N),例如N = 200。(3) 计算检查点正确分类的百分比 (P), 例如 P=89% 。(4) 利用以下不等式确定检验精度 (Drummond , 1991):222 (Z02-N)x2+(Z02+2NP)x-NP > 0对于N = 200以及Za=3.0,有:0.81

17、< x <0.95因此可以说在 99.7%的置信水平、对 200个点采样精度为 89%的情况下分类精度为 81%95%。很明显,如果减少检查点的个数或升高置信水平,确定的分类区间宽度 将加大。该方法的一个缺点是整体分类精度有可能被拒绝,尽管对某一类的分类精度是可 以接受的。遥感分类结果对于某些应用应具有一个最小的正确分类百分比。在该种情况下假 设检验最为适合。 预先确定精度的假设检验是一个经常使用的质量控制方法, 接受性 采样是质量控制的一个重要分支。关于统计质量控制的详细讨论见Grant与LeavenWorth (1988) 论述。类别属性数据外的另一种数据是连续属性数据。以下讨

18、论连续属性数据不确定性 的处理方法。三、误差矩阵的内容与表达遥感影像解释成果的可信度或不确定性问题往往是采用误差矩阵方法进行检验, 这是公认的科学方法。北京国土资源遥感公司 2001年在长江三峡库区移民工程遥感动态监测报告中,介绍了土地利用的遥感监测精度,不同的分类方法具有不同的精度 (表3表6)。其中生产者精度是遥感影像分类的结果与训练样方比较所得的精度,指地表检验 样本被正确分类出的百分数。即在用来检验如 100个随机抽样的样本中经与地面实况 核对数的判对率,如an/ia用户精度是遥感影像分类的结果与客观真实世界 (实况)比较所得的精度,指分类图 上样本类别与地表真实类别符合的百分数,如

19、印/三Aj表3 土地利用遥感监测精度的几个参数定义类另U生产者精度用户精度平均精度耕地0.8630.7940.829草地0.6940.9510.823林地0.8600.7230.792开发用地0.9320.9610.946水稻田0.9720.8680.920滩涂0.8070.7520.780城镇用地0.9180.8400.879水 域0.9640.9910.978总精度0.862 Kappa系数0.838表5神经网络的辅助数据参与分类结果类另U生产者精度用户精度平均精度耕地0.9230.8730.898草地0.7510.9820.867林地0.9750.8820.929开发用地0.9250.9

20、100.918水稻田0.9960.8350.915滩涂0.9010.6090.755城镇用地0.8770.9080.892水域0.9640.9910.978总精度0.902 Kappa系数0.886表6纹理与TM分类结果类另U生产者精度用户精度平均精度耕地0.8720.9040.888草地0.6800.9190.800林地0.9280.6960.812开发用地0.9050.9760.940水稻田0.9670.8780.922滩涂0.8830.7480.816城镇用地0.9220.8640.893水域0.9640.9910.978总精度0.871 Kappa系数0.849北京国土资源遥感公司在同

21、一地区还进行了遥感影像的公路解译及其长度的量测,并与GPS方法实测的结果时行了对比,见表7:表7北京某地区遥感影像公路解译及其长度的量测数据(北京国土资源遥感公司)GPS测量RS解译量算长度/m宽度/m占地Am12长度/m宽度/m占地4m2神女大道306.5250.0077集仙中路1892.275200.038集仙东路、平湖路5382.25180.097其他主干道8305.925120.0997合计15886.9512 250.242416143.460.184即使同一类地物的不同个体在物体特征方面也不可能完全一致,而只可能十分相似。人工模拟产品与客观世界之间的不确定性是由于测量标准本身存在着

22、不确定性, 如常用作测量标准的有:GPS测量与数据处理的精度第一种:单机定位方法,定位精度为15m左右;第二种:码差分数据后处理,定位精度为12m;第三种:相位差分数据后处理,定位精度<1m;第四种:RTK实时差分数据处理,定位精度0.050.10m(510cm)。国家测绘水准点是国家级大地测量、测绘的基准点,四级测绘点的精度为5cm。地形图的成图标准,按国家规程:1:1万地形图:山区点位中误差 <10m;平原区点位中误差<5m。北京市第二次土地资源详查产生的土地利用图精度很高但仍然存在着误差,不过是属于许可范围内的误差。中国农业大学信息学院对第二次详查成果的点位精度进 行了

23、测试。测试是用精度较高的2001年电子版(1:1万)为基准,测量了共32.6个点位, 在确认GPS测量精度的基础上对同名地物的平原区46个和山区23个点位进行测量,其结果如下(表 8表11):地形图为基准的结果:平原为 6.58m,山区为6.87m;GPS为基准的结果:平原为10.21m,山区为10.44m。表8以1999年地形图为基准的量测精度检验结果(平原)(单位:m)统计项遥感影像二次详查图误差 X误差 Y误差 X误差 Y最大值25.87430.86939.70186.507最小值0.0000.0000.0870.017中值1.7661.0224.4324.606平均值3.7972.89

24、66.3466.832中误差4.9744.3136.3818.268表9 以1999年地形图为基准的量测精度检验结果(山区)(单位:m)统计项遥感影像二次详查图误差 X误差 Y误差 X误差 Y最大值13.50726.39224.39132.283最小值0.2040.4331.0830.583中值3.0163.8129.2507.413平均值4.0615.72910.3838.628中误差3.5925.8586.8297.589表10以GPS为基准的量测精度检验结果 (平原)(单位:m)统计项遥感影像佃99年地形图1983年地形图二次详查图误差X误差Y误差X误差-Y误差-X误差Y误差X误差Y最大

25、值16.93017.32028.26015.74726.01717.93116.94716.201最小值0.0190.5940.0280.0440.2690.0630.1910.000中值4.2095.1253.3304.2563.8063.5114.5345.471平均值5.4635.3574.2414.9905.3035.2155.6195.415中误差4.4524.1014.6144.3495.3444.4804.3904.665表11以GPS为基准的量测精度检验结果 (山区)(单位:m)统计项遥感影像佃99年地形图1983年地形图二次详查图误差X误差一 Y误差-X误差Y误差X误差-Y误差X误差Y最大值20.68117.96927.75923.63723.1169.68131.37119.902最小值0.3060.8340.0140.1150.0920.1510.7021.308中值4.9517.4114.8395.0653.3313.96.6966.383平均值7.3338.1985.4235.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论