bp神经网络详细步骤C实现_第1页
bp神经网络详细步骤C实现_第2页
bp神经网络详细步骤C实现_第3页
bp神经网络详细步骤C实现_第4页
bp神经网络详细步骤C实现_第5页
免费预览已结束,剩余20页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、usingSystem;using;usingSystem.Linq;usingSystem.Text;usingSystem;usingSystem.IO;usingSystem.Text;namespaceBpANNet/<summary> /BpNet的摘要说明. /</summary> publicclassBpNetpublicintinNum;/ 输入节点数inthideNum;隐层节点数publicintoutNum;/输出层节点数publicintsampleNum;/ 样本总数RandomR;doublex;输入节点的输入数据doublex1;/隐层节

2、点的输出doublex2;/输出节点的输出doubleo1;/隐层的输入doubleo2;/输出层的输入publicdouble,w;/权值矩阵w,这是输入层与隐藏层之间的权值矩阵publicdouble,v;/权值矩阵V,这是隐藏层与输出层之间的权值矩阵publicdouble,dw;/ 权值矩阵 wpublicdouble,dv;/ 权值矩阵 Vpublicdoublerate;/ 学习率publicdoubleb1;/ 隐层阈值矩阵publicdoubleb2;/输出层阈值矩阵publicdoubledb1;/ 隐层阈值矩阵publicdoubledb2;/输出层阈值矩阵doublepp

3、;/隐藏层的误差doubleqq;/输出层的误差doubleyd;输出层的教师数据,所谓教师数据就是实际数据而B! |publicdoublee;/ 均方误差doublein_rate;/归一化比例系数用于确定隐藏层的神经细胞数publicintcomputeHideNum(intm,intn)doubles=Math.Sqrt(0.43*m*n+0.12*n*n+2.54*m+0.77*n+0.35) +0.51;intss=Convert.ToInt32(s);return(s -(double)ss)>0.5)?ss+1:ss;publicBpNet(double,p,double

4、,t)构造函数逻辑R=newRandom();this.inNum=p.GetLength(1);this.outNum=t.GetLength(1);this.hideNum=computeHideNum(inNum,outNum);/this.hideNum=18;this.sampleNum=p.GetLength(0);Console.WriteLine("输入节点数目:"+inNum);Console.WriteLine("隐层节点数目:"+hideNum);Console.WriteLine("输出层节点数目:"+outN

5、um);Console.ReadLine();将这些矩阵规定好矩阵大小x=newdoubleinNum;x1=newdoublehideNum;x2=newdoubleoutNum;o1=newdoublehideNum;o2=newdoubleoutNum;w=newdoubleinNum,hideNum;权值矩阵 w,这是输入层与隐藏层之间的权值矩阵v=newdoublehideNum,outNum;dw=newdoubleinNum,hideNum;dv=newdoublehideNum,outNum;阈值b1=newdoublehideNum;b2=newdoubleoutNum;db

6、1=newdoublehideNum;db2=newdoubleoutNum;误差pp=newdoublehideNum; 隐藏层的误差qq=newdoubleoutNum; 输出层的误差yd=newdoubleoutNum;输出层的教师数据初始化wfor(inti=0;i<inNum;i+)for(intj=0;j<hideNum;j+)/NextDouble返回一个介于0.0和1.0之间的随机数。wi,j=(R.NextDouble()*2-1.0)/2;初始化vfor(inti=0;i<hideNum;i+)for(intj=0;j<outNum;j+)vi,j=

7、(R.NextDouble()*2-1.0)/2;rate=0.8;e=0.0;in_rate=1.0;?训练函数publicvoidtrain(double,p,double,t)e=0.0;/求p, t 中的最大值doublepMax=0.0;/sampleNum 为样本总数for(intisamp=0;isamp<sampleNum;isamp+)/inNum 是输入层的节点数(即神经细胞数)for(inti=0;i<inNum;i+)if(Math.Abs(pisamp,i)>pMax)pMax=Math.Abs(pisamp,i);for(intj=0;j<o

8、utNum;j+)if(Math.Abs(tisamp,j)>pMax)pMax=Math.Abs(tisamp,j);in_rate=pMax;/endisamp for(intisamp=0;isamp<sampleNum;isamp+) /数据归一化for(inti=0;i<inNum;i+)xi=pisamp,i/in_rate;for(inti=0;i<outNum;i+)ydi=tisamp,i/in_rate;/计算隐层的输入和输出for(intj=0;j<hideNum;j+)o1j=0.0;for(inti=0;i<inNum;i+)o1j

9、+=wi,j*xi;/ 权值 ” *输入 “”的那个累加的过程这个b1j就是隐藏层的阈值,阈值就是一个输入为-1”的累加值x1j=1.0/(1.0+Math.Exp(-o1j-b1j);/计算输出层的输入和输出for(intk=0;k<outNum;k+)o2k=0.0;for(intj=0;j<hideNum;j+)o2k+=vj,k*x1j;x2k=1.0/(1.0+Math.Exp(-o2k-b2k);/计算输出层误差和均方差for(intk=0;k<outNum;k+)/ydk 是输出层的教师数据,所谓教师数据就是实际应该输出的数据而已qqk=(ydk-x2k)*x2

10、k*(1.0-x2k);e+=(ydk-x2k)*(ydk-x2k);/更新V, V 矩阵是隐藏层与输出层之间的权值for(intj=0;j<hideNum;j+)vj,k+=rate*qqk*x1j;/计算隐层误差for(intj=0;j<hideNum;j+)/PP 矩阵是隐藏层的误差ppj=0.0;/算法参考我的视频截图for(intk=0;k<outNum;k+)ppj+=qqk*vjMppj=ppj*x1j*(1-x1j);更新Wfor(inti=0;i<inNum;i+)wi,j+=rate*ppj*xi;更新b2,输出层的阈值for(intk=0;k<

11、;outNum;k+)b2k+=rate*qqk;更新bl ,隐藏层的阈值for(intj=0;j<hideNum;j+)b1j+=rate*ppj;endisampe=Math.Sqrt(e);/ 均方差adjustWV(w,dw);adjustWV(v,dv);/endtrainpublicvoidadjustWV(double,w,double,dw)for(inti=0;i<w.GetLength(0);i+)for(intj=0;j<w.GetLength(1);j+)wi,j+=dwi,j;publicvoidadjustWV(doublew,doubledw)f

12、or(inti=0;i<w.Length;i+)wi+=dwi;数据仿真函数publicdoublesim(doublepsim)for(inti=0;i<inNum;i+)xi=psimi/in_rate;/in_rate为归一化系数for(intj=0;j<hideNum;j+)o1j=0.0;for(inti=0;i<inNum;i+) o1j=o1j+wi,j*xi;x1j=1.0/(1.0+Math.Exp( -o1j -b1j);for(intk=0;k<outNum;k+)o2k=0.0;for(intj=0;j<hideNum;j+)o2k=

13、o2k+vj,k*x1j;x2k=1.0/(1.0+Math.Exp( -o2k -b2k);x2k=in_rate*x2k;?returnx2;endsim保存矩阵w,vpublicvoidsaveMatrix(double,w,stringfilename)StreamWritersw=File.CreateText(filename);for(inti=0;i<w.GetLength(0);i+)for(intj=0;j<w.GetLength(1);j+)sw.Write(wi,j+"");sw.WriteLine();sw.Close();保存矩阵b1

14、,b2publicvoidsaveMatrix(doubleb,stringfilename)StreamWritersw=File.CreateText(filename);for(inti=0;i<b.Length;i+)sw.Write(bi+"");sw.Close();读取矩阵 W,VpublicvoidreadMatrixW(double,w,stringfilename)StreamReadersr;try?sr=newStreamReader(filename,Encoding.GetEncoding("gb23 12");?Str

15、ingline;inti=0;while(line=sr.ReadLine()!=null)?strings1=line.Trim().Split()for(intj=0;j<s1.Length;j+)wi,j=Convert.ToDouble(s1j);i+;sr.Close();catch(Exceptione)?Lettheuserknowwhatwentwrong.Console.WriteLine("Thefilecouldnotberead:");Console.WriteLine(e.Message);读取矩阵b1,b2publicvoidreadMat

16、rixB(doubleb,stringfilename)StreamReadersr;try?sr=newStreamReader(filename,Encoding.GetEncoding("gb23 12");?Stringline;inti=0;?while(line=sr.ReadLine()!=null)?bi=Convert.ToDouble(line);i+;sr.Close();catch(Exceptione)?/Lettheuserknowwhatwentwrong.Console.WriteLine("Thefilecouldnotberea

17、d:");Console.WriteLine(e.Message);?endbpnetendnamespace主调用程序namespaceBpANNet/<summary>/Classi的摘要说明。/</summary>classClassl/<summary>/应用程序的主入口点。/</summary>STAThreadstaticvoidMain(stringargs)0.1399,0.1467,0.1567,0.1595,0.1588,0.1622,0.1611,0.1615,0.1685,0.1789,0.1790double,

18、p1=newdouble,0.05,0.02,0.09,0.11,0.12,0.20, 0.15,0.22,0.20,0.25,0.75,0.75,0.80,0.83,0.82,0.80,0.9 0,0.89,0.95,0.89,0.09,0.04,0.1,0.1,0.14,0.21,0.18,0.24, 0.22,0.28,0.77,0.78,0.79,0.81,0.84,0.82,0.94,0.93,0.9 8,0.99;double,t1=newdouble,1,0,1,0,1,0,1,0,1,0,0,1,0, 1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,

19、0,1,0,1, 0,1,0,1;/p1是输入的信息,一共5组,输入层为六个节点,p156 double,p1=newdouble,0.1399,0.1467,0.1567,0.1595,0.1588,0.1622, 0.1467,0.1567,0.1595,0.1588,0.1622,0.1611, 0.1567,0.1595,0.1588,0.1622,0.1611,0.1615, 0.1595,0.1588,0.1622,0.1611,0.1615,0.1685, 0.1588,0.1622,0.1611,0.1615,0.1685,0.1789;/t1是输出信息,一共 6组,t161

20、double,t1=newdouble,0.1622,0.1611,0.1615,0.1685,0.1789,0.1790;BpNetbp=newBpNet(p1,t1);intstudy=0;dostudy+;bp.train(p1,t1);bp.rate=0.95 -(0.95 -0.3)*study/50000;/Console.Write("第"+study+"次学习:"); Console.WriteLine("均方差为"+bp.e);while(bp.e>0.001&&study<50000);Console.Write("第"+study+"次学习:"); Console.WriteLine("均方差为"+bp.e); bp.saveMatrix(bp.w,"w.txt");bp.saveMatrix(bp

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论