版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第六章 偏振光分析法丈量 第一节偏振光分析法根本原理第六章 偏振光分析法丈量n根据丈量偏振矢量波的偏振态来确定被测试样的相位差,n从而求出被测试样的其它参数如应力、膜层折射率和厚度、n波像差等的方法,称为偏振光分析法。n近年来,偏振光分析法在光学丈量中的运用有很大开展。n在光学玻璃应力双折射丈量、双折射晶片及玻片相位差的测n量方面,已由普通的单1/4玻片法开展为半影法用半影检n偏器的1/4玻片法、光电晶体补偿法和运用横向塞曼激光n器的丈量法等,这些方法是丈量双折射光程差的准确度提高n了几倍到几十倍。在椭圆偏振术简称椭偏术方面,自n1945年A.Rothen描画了一种测定薄膜外表光学性质的仪器n
2、即椭圆偏振丈量仪以来,无论在实际上和运用上都有了n很大开展。第六章 偏振光分析法丈量n在我国,60年代就研制了椭偏仪。近年来,微机控制的单n色椭偏仪已有了正式产品,能测固体资料光学性质的椭偏光n谱仪几年前已研制胜利,国内最近进一步研制出同步旋转起n偏器和检偏器的可变入射角的波长扫描型椭偏仪。如今。测n量光学薄膜特性的椭偏仪已由采用消光法开展为新的光度n法,它使设备简单、精度提高、速度加快,而且还扩展运用n范围。80年代国内在偏振光分析法运用上的重要进展是实现n了压电晶体或电光晶体的条纹扫描干涉仪和采用布拉格盒的n外差干涉仪构造简单,容易实现移相,并且运用范围还会广n泛一些。由于采用偏振光分析法
3、的设备较简单而丈量准确度n较高,它必将在光学丈量中发扬越来越大的作用。第一节 偏振光分析法根本原理1 1两个频率一样、振动方向垂直的单色光波的叠加两个频率一样、振动方向垂直的单色光波的叠加或写成:或写成:消去参变量消去参变量 ,合振动矢量末端运动轨迹方程为:,合振动矢量末端运动轨迹方程为:其中:其中:当当 时,合成光波为线偏振光;时,合成光波为线偏振光;当当 时,合成光波为也为线偏振光;时,合成光波为也为线偏振光;当当 时,合成光波为正椭圆偏振光;时,合成光波为正椭圆偏振光;)(),cos(2211tkzcoaaEtkzaEyx)cos()cos(22011000tkzaytkzaxEyExE
4、yx)(sin)cos(21221221212222212aaEEaEaExm212m12) 12(2112m1212kzkz )exp()exp()(exp)(exp2010220110tiEytiExtkziaytkziaxE第一节 偏振光分析法根本原理2 2玻片玻片 玻片能使偏振光的两个相互垂直的线偏振光玻片能使偏振光的两个相互垂直的线偏振光之间产生一个相对相位延迟,从而改动它的偏振态。之间产生一个相对相位延迟,从而改动它的偏振态。玻片是由透明晶体制成的平行平面薄片,其光轴与外表平玻片是由透明晶体制成的平行平面薄片,其光轴与外表平行。当一束线偏振光垂直入射到单轴晶体制成的玻片时,在行。当
5、一束线偏振光垂直入射到单轴晶体制成的玻片时,在玻片中分解成沿原方向传播但振动方向相互垂直的玻片中分解成沿原方向传播但振动方向相互垂直的 光和光和 光两光的传播方向一样,由于两光在晶片中的速度不光两光的传播方向一样,由于两光在晶片中的速度不同,但经过厚度为同,但经过厚度为 的晶片后产生相应的相位差为的晶片后产生相应的相位差为半波片或半波片或 玻片使得线偏振光经过后依然为线玻片使得线偏振光经过后依然为线偏振光,圆偏振光入射,出射光是旋向相反的圆偏振光;偏振光,圆偏振光入射,出射光是旋向相反的圆偏振光;eoddnne022/第一节 偏振光分析法根本原理 玻片使得入射线偏振光变为椭圆偏振光,假设入射线
6、偏振光的光电矢量与玻片的快慢轴成45角时,将得到圆偏振光。3偏振的矩阵表示偏振的矩阵表示法,可以提供一种最简练的矩阵方式进展最简单的矩阵运算,来推算偏振器件组成的复杂系统对出射光波形状作用的方法,而不用去清查其中每一过程的详细物理意义,琼斯矩阵就是其中适于相关光波的一种矩阵方式。4/第一节 偏振光分析法根本原理偏振光的琼斯矢量表示偏振光的琼斯矢量表示设主轴系统中偏振光设主轴系统中偏振光 的两个正交分量的复振幅为:的两个正交分量的复振幅为:矩阵表示法就是用一个琼斯矢量的列矩阵来表示偏振光:矩阵表示法就是用一个琼斯矢量的列矩阵来表示偏振光:E) 1 (2121iyixeaEeaE)(1212112
7、1211iiiiyxeaaeaeaeaEEE第一节 偏振光分析法根本原理偏振光的琼斯矢量表示偏振光的琼斯矢量表示偏振光的强度是它的两个分量的强度和,即偏振光的强度是它的两个分量的强度和,即通常我们研讨的往往是光强度的相对变化,所以其归一化形通常我们研讨的往往是光强度的相对变化,所以其归一化形式可以用式可以用 去除去除 的每一个分量使得两分量的平方和的每一个分量使得两分量的平方和为为1而得到。思索到偏振态的外形、位置及旋向仅取决于而得到。思索到偏振态的外形、位置及旋向仅取决于两两分量的振幅比分量的振幅比 和相位差和相位差 ,因此归,因此归一化的琼斯矢量可以写为:一化的琼斯矢量可以写为:22212
8、2aaEEIyx2221aa E12/tanaaa 12)2(1222112121iiiyxaeaaaeaeaEEE第一节 偏振光分析法根本原理偏振光的琼斯矢量表示偏振光的琼斯矢量表示以下是几个偏振光的归一化琼斯矢量的例子以下是几个偏振光的归一化琼斯矢量的例子光矢量与光矢量与 轴成轴成 角,振幅为角,振幅为 的线偏振光:的线偏振光:归一化的琼斯矢量为:归一化的琼斯矢量为:长轴沿长轴沿 轴,长短轴之比为轴,长短轴之比为21的右旋椭圆偏振光:的右旋椭圆偏振光:归一化的琼斯矢量为:归一化的琼斯矢量为:xa222,sin,cosaEEaEaEyxyxsincossincos1aaaEx2225,22a
9、EEaeEaEyxiyxiaeaaEiaeaaEii2512512512512222左右第一节 偏振光分析法根本原理左旋圆偏振光归一化的琼斯矢量为:把偏振光用琼斯矩阵表示,特别方便计算两个或多个给定的偏振光叠加的结果。例如两个振幅和位相一样,光矢量分别沿 轴和 轴的线偏振光的叠加,用琼斯矢量来计算就是:而:22212,2aEEaeEaEyxiyxieaaEi12121211xy11100121EEE0154251251iiEE左右第一节 偏振光分析法根本原理线偏振光圆偏振光01i121112110sincosi121光矢量沿 轴光矢量沿 轴yx光矢量与 轴成45角光矢量与 轴成 角xx右旋左旋
10、第一节 偏振光分析法根本原理偏振器件的琼斯矩阵表示偏振器件的琼斯矩阵表示偏振光经过偏振器件之后,光的偏振态将发生变化。假设入偏振光经过偏振器件之后,光的偏振态将发生变化。假设入射射光的偏振态表示为光的偏振态表示为 ,经过偏振器件后变为,经过偏振器件后变为 ,那么偏振器件的线性变换作用可以用一个二行二列的矩阵来那么偏振器件的线性变换作用可以用一个二行二列的矩阵来表表示,即有:示,即有: 或或称称G矩阵为该偏振器件的琼斯矩阵。矩阵为该偏振器件的琼斯矩阵。式式3的分量方式为:的分量方式为:式中,式中, 普通为复常数。普通为复常数。222BAE)3(112221121122BAggggBA111BAE
11、)4(12EGE)5(12212121121112BgAgBBgAgA22211211gggg、1E2EG第一节 偏振光分析法根本原理偏振器件的琼斯矩阵表示偏振器件的琼斯矩阵表示式式5 5阐明偏振器件在偏振态转换中起着线性变换作用,阐明偏振器件在偏振态转换中起着线性变换作用,新的偏振态的两个分量是原来偏振态两分量的线性组合。新的偏振态的两个分量是原来偏振态两分量的线性组合。下面举例求取偏振器件的琼斯矩阵下面举例求取偏振器件的琼斯矩阵例例1 1:线偏振器件的琼斯矩阵:线偏振器件的琼斯矩阵设偏振器透光轴与设偏振器透光轴与 轴成轴成 角,如下图角,如下图建立建立 坐标系,入射光在坐标系,入射光在 轴
12、上的两轴上的两个分量分别为个分量分别为 和和 ,将它们在线偏振器,将它们在线偏振器透光轴方向上投影。入射光经过线偏振器后,透光轴方向上投影。入射光经过线偏振器后, 和和 沿透光沿透光轴方向的分量分别为轴方向的分量分别为 和和 ,将这两个分量的组,将这两个分量的组合在合在 上再投影,得到出射光的两个分量上再投影,得到出射光的两个分量 和和 ,即,即xxoyyx,1A1Bcos1A1A1Bsin1Bxy1A1Byx,2A2B2A2B+透光轴第一节 偏振光分析法根本原理偏振器件的琼斯矩阵表示偏振器件的琼斯矩阵表示比较式比较式5 5,可得线偏振器的琼斯矩阵为:,可得线偏振器的琼斯矩阵为:2111121
13、21112sin2sin21sin)sincos(2sin21coscos)sincos(BABABBABAA22sin2sin212sin21cosG第一节 偏振光分析法根本原理偏振器件的琼斯矩阵表示偏振器件的琼斯矩阵表示例例2 2:玻片的琼斯矩阵:玻片的琼斯矩阵设玻片的快轴与设玻片的快轴与 轴成轴成 角,经过玻片后两光产生的相位差角,经过玻片后两光产生的相位差为为 。如下图建立坐标系。取入射偏振光为。如下图建立坐标系。取入射偏振光为 ,那么两分,那么两分量在玻片快、慢轴上的分量和为:量在玻片快、慢轴上的分量和为:11BAxsincos11BAAcossin11BABx快轴慢轴1A1ByAB
14、第一节 偏振光分析法根本原理偏振器件的琼斯矩阵表示偏振器件的琼斯矩阵表示例例2 2:玻片的琼斯矩阵:玻片的琼斯矩阵或表示为:或表示为:从玻片出射时,必需思索快、慢轴上分量的相对相位延迟,从玻片出射时,必需思索快、慢轴上分量的相对相位延迟,于是,从玻片出射的分量变为:于是,从玻片出射的分量变为:或表示为:或表示为:这两个分量再分别在这两个分量再分别在 轴上投影,得到出射光琼斯矢量在轴上投影,得到出射光琼斯矢量在 轴上的两分量为:轴上的两分量为:11cossinsincosBABAx快轴慢轴1A1ByBAeBAi001ieBBAAyx,yx,cossinsincos22BABBAAAB第一节 偏振
15、光分析法根本原理偏振器件的琼斯矩阵表示偏振器件的琼斯矩阵表示例例2 2:玻片的琼斯矩阵:玻片的琼斯矩阵或表示为:或表示为:代入各量,得:代入各量,得:整理后,得到玻片的琼斯矩阵为:其中整理后,得到玻片的琼斯矩阵为:其中 为快慢轴的相位差;为快慢轴的相位差; 为快轴为快轴与与 轴的夹角。轴的夹角。BABAcossinsincos221122cossinsincos001cossinsincosBAeBAix快轴慢轴1A1ByAB11cossinsincosBABABAeBAi0012cos2tan12sin2tan2sin2tan2cos2tan12cosiiiiGx第一节 偏振光分析法根本原理
16、偏振器件的琼斯矩阵表示偏振器件的琼斯矩阵表示以下是典型偏振器件的琼斯矩阵:以下是典型偏振器件的琼斯矩阵:线偏振器线偏振器22sin2sin212sin21cos00011000111121xyxx透光轴与 轴成45透光轴在 方向透光轴在 方向透光轴与 轴成 角第一节 偏振光分析法根本原理玻片半波片 xi0011121iii00110010110 xyxx快轴在 方向快轴在 方向快轴与 轴成45角快轴在 或 方向快轴与 轴成45角ysincos第一节 偏振光分析法根本原理典型偏振器件的琼斯矩阵ie001快轴在 方向慢轴在 方向相位延迟角为 xxie001快轴与 轴成4512tan2tan12co
17、siix2cos2tan12sin2tan2sin2tan2cos2tan12cosiiiiG第一节 偏振光分析法根本原理n用偏振光分析法确定被测试样相位差的根本原理是:入射n线偏振光经过被测试样和某种偏振器件泛指产生椭圆偏振n光、圆偏振光或线偏振光的器件或先经过偏振器件再经过n被测试样,之后,又成为线偏振光。但其振动方向相对于原n入射偏振光的振动方向偏转了一个角度,该角度与被测试样n的相位差成简单的线性关系。n实践上述根本原理的方案有两种:n一种是将试样放在起偏器与1/4玻片具有双折射光程差为n/4或相位差为/2的薄晶片之间,绕通光方向转动试样n或试样不动同步转动其它全部偏光器件,使从1/4
18、玻片出射n的是振幅一样的左旋和右旋圆偏振光,合成为线偏振光,其n电矢量方位角与被测试样相位差线性相关。第一节 偏振光分析法根本原理n第二种方案是:将试样放在1/4玻片和检偏器之间,绕通n光方向转动起偏器,当出现消光景象时,起偏器振轴的方位n角与被测试样的相位差线性相关。n定义线偏振器振轴的方向为自然光经过线偏振器后成为线n偏振光的振动方向。n一、试样在起偏器和1/4玻片之间的方案n光学系统简图和各偏振器及试样所对应的电矢量的方位图如n图6-1所示。MPx,1起偏器2试样3玻片4检偏器5ST452/NPy,22P2/一、试样在起偏器和1/4玻片之间的方案单色平行光经过起偏器2成为线偏振光,设其振
19、动方向 平行于 轴,再经过有双折射的试样3,成为两束振动方向 相互垂直线偏振光普通合成为椭圆偏振光,当振动方向之一如 与 轴成45角时,这两束线偏振光经过快、慢方向 分别与 轴平行的1/4玻片后又合成为线偏振光。检偏器5的偏振轴 的起始方位与 轴平行,即不放入试样时视场是消光的。x1PTS,SxNM,yx,2PyMPx,1起偏器2试样3玻片4检偏器5ST45NPy,22P2/一、试样在起偏器和1/4玻片之间的方案下面导出透过1/4玻片后线偏振光的方位角与试样相位差的数学关系。设经起偏器的线偏振光表示为 ,经相位差为 的试样,当试样的快方向与 轴成+45角时,对应的琼斯矩阵为:玻片的矩阵,当快方
20、向与 轴平行时为exp00tiax2cos2sin2sin2cosiii001x一、试样在起偏器和1/4玻片之间的方案经1/4玻片后的光束可表示为:这是一束振动方向与 轴成 角的线偏振光。转动检偏器到消光时,转过的角度 就等于 。) 16(exp2sin2cosexp02cos2sin2sin2cos0010021tiatiaiiiEEx2/2/起偏器2试样3玻片2/2P2/2P一、试样在起偏器和1/4玻片之间的方案n当试样的慢方向与 轴成+45角时,对应的琼斯矩阵为:n这时可求得:n这是一束振动方向与 轴成 角的线偏振光。x2cos2sin2sin2cosii)26(exp2sin2cose
21、xp02cos2sin2sin2cos001021tiatiaiiiEE2/x一、试样在起偏器和1/4玻片之间的方案这是一束振动方向与 轴成 角的线偏振光。反方转动检偏器到消光时 ,转过的角度也是 。最后得第一种方案出射线偏振光电矢量的方位角 与被测试样的相位差 的关系为:2/)36(2/起偏器2试样3玻片42/2/检偏器2/2Px2/2P2/二、试样在1/4玻片和检偏器之间的方案其光学系统简图和各偏光器件及试样所对应的电矢量方位图如图6-2所示。设起偏器的偏振轴与 轴的夹角为 ,透过光的琼斯矢量为:玻片快方向与 轴成45角,其琼斯矩阵为:设被测试样的快方向平行于 轴,琼斯矩阵为:xsinco
22、s1121iixie001x起偏器P试样S玻片检偏器Ayx1P045(快)4/(慢)4/二、试样在1/4玻片和检偏器之间的方案经试样出射的光束可表示为:由式6-4可以看出,当出射光束成为线偏振光,当 为偶数时,其振动方向与 轴成+45角;当 为奇数时,那么与 成-45角。)46(exp121expsincos11001210)2/2(021tieaetiaiieEEiii, 3 , 2 , 1 , 0,)2/2(kkkkxxyx1P045(快)4/(慢)4/二、试样在1/4玻片和检偏器之间的方案设式6-4表示的光束经过偏振轴与 成+45的检偏器,其琼斯矩阵为: 可得:上式是略去了两正交偏振光的
23、公共因子后的结果。对应光强为:转动起偏器改动 角,当 , 为奇数时, ,即出现消光景象。这时可由测得的 求出相位差 。显然,假设检偏器的偏振轴与 轴成-45角。那么 为偶数时消光。k)2/2(111121)2/2(0exp1 tiieE)56(2/ )2/2(cos)2(2Ikx0)2(Ixkyx1P045(快)4/(慢)4/2P二、试样在1/4玻片和检偏器之间的方案转动起偏器,测出不同时辰的光强值 ,利用正交选频积分也可求得相位差 :这时由于光束被限制,从而有效地防止了光路中引入的扰动。假设经试样后两正交偏振光的振幅不相等,设分别为A和B,并且 ,那么试样的琼斯矩阵为快方向平行于 轴:)66
24、()2()2sin()2(1)2()2cos()2(1arctan2020dIdIiecAtan001)2(Itan/cAByx1P045(快)4/(慢)4/2Px二、试样在1/4玻片和检偏器之间的方案经试样出射光束可表示为:要使该光束经检偏器后的出射光束的光强正比于式6-5所示的 ,只需转动检偏器使其偏振轴与 轴成 角即可,此时检偏器的琼斯矩阵为:)76(exptan121expsincos11tan001210)2/2(021tiecAaetiaiiecEEiii22sincossincossincos2/ )2/2(cos2x二、试样在1/4玻片和检偏器之间的方案光束经检偏器后可得:这是
25、一束线偏振光,振动方向与 轴成 角,光强正比于 。转动起偏器改动 角,当 为奇数时消光。由测得转角 即可求出试样的相位差 。从以上分析可见,第二方案较适用于试样不宜转动,经试样后两正交偏振光振幅不相等的丈量系统中。exp21cos1 sincos0)2/2(21tiAaeieEEii xk)2/2(2/ )2/2(cos2第六章 偏振光分析法丈量 第二节光学玻璃应力双折射丈量第二节 光学玻璃应力双折射丈量n光学玻璃毛坯的内应力通常是指从退火温度冷却的过程n中,毛坯中心和边缘部分不可防止的温度差而产生的应力。n这种退火后永久留下来的应力称为退火应力,又称剩余应力n以下简称应力。应力使玻璃由各向同
26、性体变为各项异性n体,光学上产生双折射景象。我们是经过测出的应力双折射n单位厚度的双折射光程差称为应力双折射来衡量玻璃中n应力的大小的。同时也可以衡量玻璃的退火的质量。n一、应力与双折射n光经过有应力的玻璃会产生双折射。受均匀单向力的玻璃,n其光学性质好像一块单轴晶体,光轴方向就是作用力的方向。一、应力与双折射n非常光e光的振动方向在主截面入射光与光轴构成n的平面内,寻常光o光的振动方向垂直于主截面。n玻璃遭到单向拉应力时,其光学性质好像单轴正晶体,即n ;受单向压应力时,那么好像单轴负晶体, n 。n正、负晶体的快慢n方向及e光振动方向n如图图6-3所示。enn 0evv 0enn 0evv
27、 0光线光轴ovevE光振动方向慢光轴E光振动方向快光线evovOOa正晶体b负晶体一、应力与双折射n平行光垂直光轴经过晶片时,产生的双折射光程差最n大,亦即光束方向对应于最大双折射率 方向。对n玻璃来说,垂直于光轴的方向就是垂直于玻璃的主应力方向。n我们规定以垂直于主应力方向测得的值来表征主应力的大n小。双折射光程差由下式计算n n式中 d晶片或玻璃板的厚度。n从有应力的玻璃中取一立方体单元,普通情况单元受三个n方向的应力 。假设光线沿z轴方向经过立方体单元,n产生的应力双折射 单位厚度的双折射光程差与两个应n力 之差成正比max)(oenn )(oenndzyxPPP,nyxPP ,)86
28、()(yxnPPB一、应力与双折射n比例系数B称为应力偏光系数,又称应力光学系数。假设取Pn的单位为 , 的单位为 ,那么B的单位为“布nBrewster, 。应力偏光系数的大小与玻璃n成分有关:冕牌玻璃B=2.53.7布;重火石玻璃B=0.72.0n布;其他牌号玻璃的B值大多介与上述二者之间。n式6-8是根据麦克斯韦于1852年建立的应力光学定律得n来的。n假设在垂直于光束的方向上,玻璃只需一个主应力 n ,那么有n上式表达了应力双折射与应力的比例关系。故应选择玻璃上n只需一个主应力的点进展应力双折射的丈量,并且光束入射n方向与主应力垂直。)86()(yxnPPBPa510ncmnm/112
29、101Pa布PPx0yP)96( BPn一、应力与双折射n根据国家规范GB903-87,玻璃的应力双折射规范有玻璃中n部的和玻璃边缘的两种。前者以玻璃块最长边中部单位长度n上的光程差 表示;后者以距玻璃边缘为5%的直径或n边优点各点中最大的单位厚度上的光程差 表示。n并且要求光束垂直式样外表入射。中部和边缘的丈量点与光n束入射方向如图6-4中的A-B点和、方向。n根据玻璃退火后的主应力分布规律,n上述中部和边缘的各丈量点普通都只需n一个主应力,并且应力方向平行于玻璃表n面,所以丈量光束要垂直于外表入射,如n图6-4中的、方向。)/(cmnm)/(maxcmnmAB第二节 光学玻璃应力双折射丈量
30、假设用 或 来衡量玻璃退火后的质量,那么退火后的玻璃毛坯只允许外表研磨或抛光,不允许切割,由于切割后应力分布规律和应力的大小都将改动。二、双折射光程差的丈量方法一简易偏光仪法通常用偏光仪丈量玻璃的双折射光程差,最简单的偏光仪由起偏器和检偏器组成,二者的偏振轴相互垂直或平行。将有应力的圆玻璃板置于两个偏振器之间,根据视场中看到的亮暗条纹判别玻璃式样中应力双折射的大小及主应力的方向。为了有效地运用简易偏光仪,首先要对玻璃退火后应力分布的普通规律有所了解。max二、双折射光程差的丈量方法一简易偏光仪法假设圆玻璃板是放在圆柱形退火炉的中心进展退火的,而且炉内温度对称于炉轴线分布,这样退火后的玻璃的应力
31、是对称于圆玻璃板中心分布的,如图6-5的左图所示,图中 和分别表示切向应力和径向应力;圆玻璃板侧面的应力分布如图6-5右图所示,图中 表示中部应力,rtR0.57Rtrt0,32trr0,2 rrtaa2a57. 0coPoePP2oP二、双折射光程差的丈量方法一简易偏光仪法无论是 还是 都是指光束经过玻璃板整个厚度或沿直径经过后的综合应力,不是玻璃外表或某一层的应力。假设玻璃板不放在炉子中央,或玻璃不是圆形的,应力分布都不同。因此,丈量边缘应力时,丈量点应选在距大面边缘为直径5%处,这时近似只需一个主应力,为切向压应力 ;teoPP ,R0.57Rtrt0,32trr0,2 rrtaa2a5
32、7. 0coPoePP2rt,t 二、双折射光程差的丈量方法一简易偏光仪法丈量中部应力时,光线应垂直于C点经过玻璃,这时近似也只需一个主应力,为切向拉应力 。沿厚度方向距中心各0.57a的两个截面上,应力为零,即有两个零应力面,光线沿这两个面入射时,其双折射光程差为零。oPtR0.57Rtrt0,32trr0,2 rrtaa2a57. 0coPoePP2二、双折射光程差的丈量方法一简易偏光仪法假设光线垂直于大面入射,由于中心点O遭到各方向的拉应力,这相当于式6-8中的 ,故 。距中心O为0.57R的圆周上各点的切向应力 ,仅有径向拉应力 。对应于应力分布,就能知道经过起偏器的平行单色线偏振光分
33、布经过圆玻璃板的大面和侧面后,经正交的检偏器看到的亮暗条纹分布情况了。yxPP 0ntR0.57Rtrt0,32trr0,2 rrtaa2a57. 0coPoePP20tr二、双折射光程差的丈量方法一简易偏光仪法如下图,当有应力的玻璃试样放在正交的起偏器 和检偏器 之间可以看到亮暗条纹,分布如下:1大面中心因双折射光程差为零,故为暗圆斑;2由中心到边缘双折射光程差逐渐添加,条纹变亮,应力较大时还会出现一至数个同心的亮暗相间的圆条纹,假设改用白光照射,亮暗条纹将变为彩色条纹。颜色一样的某一圆条纹的光程差一样,这种因光程差变化而产生的条纹称为等色线。2P1P2P1P二、双折射光程差的丈量方法一简易
34、偏光仪法相邻两同色或等亮度的等色线之间的光程差 的变化量为 ,相位差 的变化量为 。在大面上还可以看到一个暗十字形的条纹,并且绕中心转动玻璃时,暗十字条纹不动,假设玻璃板不动,起偏器和检偏器一同转动,那么暗十字同步转动。这时由于玻璃板上对应暗十字条纹中心的各点的径向应力 和切向应力 的方向不是平行于偏振轴 ,就是垂直于 ,1rt1P1P1P2P22P二、双折射光程差的丈量方法一简易偏光仪法由前所述应力与双折射的关系知:e光振动方向平行于应力方向,所以经过了玻璃板上对应十字条纹中心各点的光学不是仅有e光,就是仅有o光,而且它们的振动方向都平行于 ,因此都通不过检偏器而呈现暗纹。因应力方向平行或垂
35、直于偏振轴 而产生的暗纹称为等倾线。如图6-6所示的等倾线,等倾线是暗线,而且不是平行就是垂直于 。由等倾线的位置可以知道该处的主应力方向。由 的等色线的位置,即可根据等色线的分布情况估计出玻璃板的双折射光程差的分布情况。1P1P1P0二、双折射光程差的丈量方法二单1/4玻片法假设要定量丈量双折射光程差,引荐采用1/4玻片法,由于它设备简单,丈量可靠。对退火质量较好的光学玻璃,普通 ,这时用1/4玻片法有较高的丈量准确度。单1/4玻片法只用一块1/4玻片,椭圆偏振光经过1/4玻片,只需椭圆的长短轴分别与1/4玻片的快慢轴平行,从1/4玻片出射的将是线偏振光。本方法就是利用这个特性来丈量玻璃的双
36、折射光程差的。丈量原理图如下图:1P2Pxy慢快xy二单1/4玻片法如下图,单色自然光经起偏器1成为单色线偏振光,经由被测试件普通成为椭圆偏振光,当试件2的快、慢轴方向 与起偏器的偏振轴 成45角,经试件出射的光将是沿线偏振轴的正椭圆偏振光,即椭圆偏振光的长短轴 必有一个与起偏器的偏振轴 平行。yx,YX,1P1P1Pxy慢快MNYX0450451P二单1/4玻片法n假设1/4玻片的快或慢轴分别与起偏器轴椭圆偏振光n的长或短轴平行,那么从1/玻片出射的光将成为线偏振光。n要使椭圆长短轴 分别与1/4玻片的快慢轴 平行,n只需未放入试件前调整1/4玻片,使其快、慢轴分别起、检偏n器的偏振轴 平行
37、即可此时视场最暗。YX,NM,21, PP1Pxy慢快YX045045MN)(,1NXP)(MY045二单1/4玻片法1假设1/4玻片的慢轴方向N平行于 ,那么如下图。这时经过1/4玻片后,椭圆偏振光在 轴上二分量之间原有的 相位差刚好被1/4玻片产生的相位差抵消,于是合成线偏振光,其振动方向与 轴夹角为 , 为玻璃被测点的双折射相位差。2/YX,1PX2/1Pxy慢快YX045045MN)(,1NXP)(MY045二单1/4玻片法线偏振光再经过后面的检偏器其透光轴为 ,与 行,当检偏器 逆时针转过角度 时视场又复最暗,所以被测点的双折射光程差为:2PYX045MN)(,1NXP2),(PMY
38、0452P1P1P)106(22Y2P2P二单1/4玻片法2假设1/4玻片快轴方向M平行于 或者试件的慢方向为 方向时,经1/4玻片后,椭圆偏振光 轴上二分量之间的相位差添加到 ,也合成线偏振光,其振动方向与夹角也是 ,但 角的方位有所不同。如下图,这时检偏器顺时针转过 角视场最暗。假设逆时针旋转检偏器,那么需转过180- 。1PxYX,X2PYX045MN)(,1MXP2),(PNY0451P1P2P二单1/4玻片法测出试件中部的 或边缘的 值后,再测出试件通光方向的长度 值,那么试件每厘米长的双折射光程差 或 为:假设玻璃的内应力较大,就当试件被测点的双折射光程差时,首先应找到试件通光面上
39、 的点,这时用白光替代单色光,那么可看到彩色的等色线,其中无颜色的暗点或暗纹即为试件上 的位置。区别 的暗纹与暗的等倾线的方方法是起偏器、1/4、检偏器一同转动,不动的即为 的暗点或暗纹。0maxlmax)126()116(maxmaxmax0llll0000二单1/4玻片法n丈量时,改用单色光,数出从零点到被测点之间的暗纹数 整数,再用前述方法测出分数部分对应的 角,被测n点的双折射光程差为:n由算出的 或 与规范GB903-87给出的数值对照,即可n测定出被测试件的原理双折射类别。n玻璃毛坯按双折射内应力的大小分类: N)136( Nmax类别每厘米最大光程差/nm122631042053
40、0二单1/4玻片法用用1/41/4玻片丈量光学玻璃的双折射光程差的步骤:玻片丈量光学玻璃的双折射光程差的步骤:1 1先调整起偏器和检偏器的偏振轴正交,视场最暗;先调整起偏器和检偏器的偏振轴正交,视场最暗;2 2放入放入1/41/4玻片,绕入射光轴旋转玻片,绕入射光轴旋转1/41/4玻片,使视场又复最玻片,使视场又复最暗,此时暗,此时1/41/4玻片的快慢轴分别与起、检偏器的偏振轴平行;玻片的快慢轴分别与起、检偏器的偏振轴平行;3 3放入试件,眼睛透过检偏器和放入试件,眼睛透过检偏器和1/41/4玻片调焦于被测点玻片调焦于被测点上,绕光轴旋转试件或试件不转,起、检偏器、上,绕光轴旋转试件或试件不
41、转,起、检偏器、1/41/4玻片一玻片一起旋转,看到试件被测点最暗时,再继续转起旋转,看到试件被测点最暗时,再继续转4545,被测点,被测点变亮。变亮。4 4单独转动检偏器,使被测点又复最暗,这时检偏器转过单独转动检偏器,使被测点又复最暗,这时检偏器转过的角度即是的角度即是 角。角。第六章 偏振光分析法丈量 第三节光学薄膜厚度和折射率丈量第三节 光学薄膜厚度和折射率丈量n偏振光分析法是丈量薄膜参数常用的方法,在薄膜丈量中n常称偏振光分析技术为椭偏术。n70年代,我国开场将椭偏术运用于测定和控制大规模集成n电路元件的薄膜厚度和折射率。并且广泛用于丈量光学玻璃n外表所镀光学薄膜及玻璃外表侵蚀膜的厚
42、度和折射率。80年n代末,在国内较广泛运用的自动椭偏仪的根底上,有研制了n高精度扫描椭偏仪和自动椭偏光光谱仪,后者用于丈量不同n波长下试样的折射率 、消光系数 、介电常数 和 、膜n厚 等参数。n椭偏仪采用的丈量方法有三种:消光法、调制消光法和光n度法。三种方法的根本原理一样,以下以消光法为例引见其n丈量原理。1nk2d一、椭偏仪的丈量原理n椭偏仪的光学系统如下图,激光经起偏器称为线偏振n光,经过1/4玻片后成为长轴与短轴分别与1/4玻片快慢轴重n合的椭圆偏振光。1/4玻片的快慢轴分别与试样外表的入射n面成固定的45角,光束经试件薄膜上下外表反射后,又被n分解成在入射面内振动和垂直于入射面振动
43、的P、S分量,这n两个分量的相位差与薄膜厚度和折射率有关。n045045oEeEEPS慢轴快轴激光束起偏器玻片检偏器光电探测器基片介质薄膜1一、椭偏仪的丈量原理n起偏器的偏振轴E与P分量夹角为 ,光线经O点垂直于纸n面向传播。可以看出,椭偏仪光学系统的布置与本章第一节n的第二种方案一样被测试样放在1/4玻片与检偏器之间。n那么激光束从检偏器出射的光强度为:n其中 为光束斜入射到试件薄膜上,经薄膜上下外表反射分n解成P、S分量之间的相位差。它与薄膜厚度和折射率,以及n光束入射角 等有关。2/ )2/2(cos)2(2I1一、椭偏仪的丈量原理n根据菲涅尔公式得知薄膜上外表反射光的振幅比 的P、nS分量为:n同理,对薄膜下外表的反射光可写出 的表示式。n式中 和 分别为空气、薄膜和基片的折射率; 为入n射角, 为光束进入薄膜和基片的折射角。)146(coscoscoscoscoscoscoscos2211221111212211211nnnnEErnnnnEErSSSPPP1r为空气中入射光在入射面内和垂直于入射面的P、S分量的振幅;经薄膜上外表反射后的P、S分量的振
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论