2019年最新-BoundaryDetectioninTokenizingNetworkApplicationPayload:在网络应用的有效载荷边界检_第1页
2019年最新-BoundaryDetectioninTokenizingNetworkApplicationPayload:在网络应用的有效载荷边界检_第2页
2019年最新-BoundaryDetectioninTokenizingNetworkApplicationPayload:在网络应用的有效载荷边界检_第3页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Boundary Detection in Tokenizing Network Application Payload for Anomaly DetectionRachna Vargiya and Philip ChanDepartment of Computer SciencesFlorida Institute of TechnologyMotivationExisting anomaly detection techniques rely on informatio n derived only from the packet headersMore sophisticated at

2、tacks involve the application payloadExample : Code Red II wormGET /default ida?NNNNNNNNNParsing the payload is required!Problems in hand-coded parsing:Large number of application protocolsFrequent introduction of new protocolsProblem StatementTo parse application payload into tokens without explici

3、t knowledge of the application protocolsThese tokens are later used as features for anomaly detectionRelated workPattern Detection Important TokensFixed Length:Forrest et al. (2019)Variable Length:Wespi et al. (2000)Jiang et al.(2019)Boundary Detection - All Tokenso VOTING EXPERTS by Cohen et al. (2

4、019)Boundary EntropyFrequencyBinary VotesApproachBoundary Finding Algorithms:o Boundary Entropyo FrequencyAugmented Expected Mutual InformationMinimum Description LengthApproach is domain independent (no prior domain knowledge)Combining Boundary FindingAlgorithmsCombination of all or a subset (E.g.

5、Frequency + Minimum Description Length) of techniquesEach algorithm can cast multiple votes, depending on confidence measureBoundary Entropy (Cohen et al)Entropy at the end of each possible window is calculatedHigh Entropy means more variationw XItis 1 rai ny dayis the byte following the current win

6、dowVoting using Boundary Entropy change graph to discrete bars )Itiseirainydayn n n n n n n n n o n n n nEntropy in meaningful tokens starts with a high value, drops, and peaks at the end Vote for positions with the peak entropy Threshold suppresses votes for low entropy valuesThreshold = Average BE

7、Frequency (Cohen et al)Most frequent set of tokens are assumed to be meaningful tokensFrequencies of tokens with length =1,2, 3., 6 Shorter tokens are inherently more frequent than longer toke nsNormalize frequencies for tokens of the same length using standard deviationBoundaries are assigned at th

8、e end of most frequent token in the windowrainy dayFrequency in window:(1 )T = 3(2),lf, = 5(3)=2(4)”lt is” = 3Mutual Information (Ml)Mutual Information given by:Gives us the reduction of uncertainty in presence of event b given event &Ml does not incorporate the counter evidence when & occurs withou

9、t b and vice versaAugmented Expected Mutual Information(AEMI)AEMI sums the supporti ng evide nee and subtracts the counter evidence For each window, the location with the minimum AEMI value suggests a boundaryItisRrainydayabMinimum Description Length(MDL)Shorter code assigned to frequent tokens to m

10、inimize the overall coding lengthBoundary yielding shortest coding length is assigned votesCoding Length per byte:Lg P(tj): no of bits to encode t(o |tj|=lengthoftjI疋渥沦京n艺IJE|rainy ay / t|efttjghtNormalize scores of each algorithm Each algorithm produces list of scores Since the number of votes is p

11、roportional to the score, the scores must be normalized Each score is replaced by the number of standard deviations that the score is away from the mean valueNormalize votes of each algorithmAlgorithms produce list of votes depending on the scoresMake sure each algorithm votes with the same weightNu

12、mber of votes is replaced by the number of standard deviations from the mean valueNormalizing Scores and VotesCombined Normalized VotesCombined Approach with WeightedVotingA list of votes from all the experts is gatheredFor each boundary, the final votes are summedA boundary is placed at a position

13、if the votes at the position exceed threshold. Threshold = Average number of VotesAnomaly Detection Algorithm 一 LERAD(Mahoney and Chan)LERAD forms rules based on 23 attributes o First 15 attributes: from packet headerNext 8 attributes: from the payloado Example Rule:If port = 80 then wordl 二 “GET”Or

14、iginal Payload attributes: space separated tokensOur Payload attributes: Boundary separated tokensExperimental Data2019 DARPA Intrusion Detection Evaluation Data Set Week 3 :attack free (training) dataWeeks 4, 5: attack containing (test) dataEvaluations A, B, C (Known boundaries) : Week 3o trained:

15、days 1 - 4o tested: days 5-7Prevent gaining knowledge from Weeks 4 and 5Evaluation D (Detected attacks)Trained: Week 3Tested :Weeks 4 and 5Evaluation A: % of Space-SeparatedTokens RecoveredMethodPort#25Port#80Port#21Port#79AvgFreq+MDL5226218145.0Freque ncy1516139936.0BE +AEMI + MDL+ Freq211451213.0A

16、EMI5943212.5MDL6732510.3BE33194.0Evaluation B: % of Keywords in RFCsRecoveredMethodPort#25Port#80Port#21AvgFreq+MDL40365945.0Freque ncy31284033.0BE+AEMI+MDL+Freq12132115.3AEMI9525.3MDL7614.7BE3222.3Evaluation C: Entropy of Output (Lower is Better) average across 6 portsMethodAverage ValueFreque ncy5

17、.0MDL5.03Freq+MDL5.06BE5.25BE +AEMI + Freq + MDL5.56AEMI6.38Ranking of AlgorithmsMethodEvaluation AEvaluation BEvaluation CFreq+MDL3Freque ncy221BE+AEMI+ MDL+ Freq335AEMI446MDL552BE664Detection Rate for Space Separated VsBoundary Separated (Freq + MDL)Port #10 FP/day100 FP/daySpaceBoundarySpaceBound

18、ary20224521141614172233332313141314251516161679333380101011131132222Overall59626368% Improvement58Summary of ContributionsUsed payload in formation, while most IDS concentrate on header information.Proposed AEMI + MDL for boundary detection Combined all and subset of algorithmsUsed weighted voting to indicate confidence Proposed techniques find boundaries better than spacesAchieved higher detection rates in an anomaly detection systemFuture WorkFurther evaluation on other portsPick more useful toke ns in stead of first 8DARPA data set is partially synthetic, further evaluation on real traffi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论