初中数学教学设计案例_第1页
初中数学教学设计案例_第2页
初中数学教学设计案例_第3页
初中数学教学设计案例_第4页
初中数学教学设计案例_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初中数学教学设计案例初中数学教学设计 教材分析 1、 本节内容是七年级下第九章轴对称中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角 形的基本概念, 故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上, 着重探究等腰三角形的两 个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门 的第一课。 2、 等腰三角形是在第八章多边形中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形 成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。 3、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的

2、地位,是构成复杂图形的基本单位,等 腰三角形的定理为今后有关几何问题的解决提供了有力的工具。 4、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深 对称思想的理解有重要意义。 5、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究 的问题。 6、 新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可 以认真研究。 7、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力 都有重要的意义。 8、 本课内容安排上难度和强

3、度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争 的意识。 学情分析 1、 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。 2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平 衡。 3、 本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动 学生的积极性。 教学目标 知识目标 等腰三角形的相关概念,两个定理的理解及应用。 技能目标 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察 对象,总结一些有益的结论。 情感目标 体会数学的对称美

4、,体验团队精神,培养合作精神。 教学中的重点、难点 重点 1、等腰三角形对称的概念。 2、“等边对等角”的理解和使用。 3、“三线合一”的理解和使用。 难点 1、等腰三角形三线合一的具体应用。 2、等腰三角形图形组合的观察,总结和分析。 主要教学手段及相关准备 教学手段 1、使用导学法、讨论法。 2、运用合作学习的方式,分组学习和讨论。 3、运用多媒体辅助教学。 4、调动学生动手操作,帮助理解。 准备工作 1、多媒体课件片断,辅助难点突破。 2、学生课前分小组预习,上课时按小组落座。 3、学生自带剪刀,圆规,直尺等工具。 4、每人得到一张印有“长度为 a 的线段”的纸片。 教学设计策略:依据教

5、学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我 主要体现了以下的设计思想和策略 1、 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。 2、 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现 一些灵活性。 3、 教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动 为主体的教学过程。 教学步骤及说明 学生活动 预习相关概念及定 理。 课题引入 观察并回答。 让 学 生 观 察 两 把 三 角 从直观图形上,回忆小 在 小 学 知 识 和 第 八 章 尺,

6、从三角形分类思考 学知识,体会等腰三角 三角形知识的基础上, “ 两把三角尺的形状除 形。 学生比较容易得到结 了角度不同外还有什么 论。 区别” 在对学生思考结果的总 结基础上,引入新课题。 新授 1、等腰三角形的相关概 念,腰,底边,顶角, 理解等腰三角形相关概 底角。 念。 教师活动 教学目标 教学说明 培养学生良好的学习 习惯。 学生同步回答 学 生 运 用 直 尺 或 圆 2、指导学生做一做,要 深入体会,等腰三角形 规 和 剪 刀 进 行 绘 图 求:在事先准备的纸上, 的构成和画三角形的方 和剪切。 画一个腰长为 a 的等腰 法。 三角形,并将它剪下来, 与组内其他成员的作品 放

7、在一起,并观察和回 答问题。 学生观察并思考,然 3、第一个问题:观察所 1、 直观体会钝角等腰 后讨论,然后积极回 剪得的三角形形状是否 三角形,锐角等腰三角 答。 相同,在满足条件的情 形,直角等腰三角形的 况下,可以画几个不同 不同特点。 类的等腰三角形。 2、 体会已知两边不能 确定三角形,为理解全 等或三角形的构成作铺 垫。 学生以小组形式进 行操作和讨论 1、 培养学生的观察, 然 后 努 力 向 结 果 慢 4、第二个问题:将这些 猜测,总结的能力。 慢前进。 三角形放在一起,并且 2、 体验等腰三角形在 使顶点重合,观察另外 圆中的存在 的一些顶点,看看有什 3、 体会合作的乐

8、趣。 么特点和发现。 4、 体会从特殊到一般 的过程,为今后的轨迹 思想做一些准备。 学生对自己剪得的 1、 从轴对称角度理解 等腰三角形作操作, 等腰三角形,为后面的 体会对称的思想。 等量关系的得出做铺 在讨论的基础上,回 5、问题:等腰三角形是 垫。 答更高层次的问题。否为轴对称图形,如何 2、 体验学习过程。 通过具体的操作体现他 3、 加深对一般情况和 是轴对称,并指出对称 特殊情况的理解,提高 轴。 学生对两解问题的敏感 度。 学生观察,并且以小 问题:等边三角形是 组 竞 赛 的 方 式 进 行 否为轴对称图形,对称 大 范 围 的 搜 索 和 体 轴有几条。 验。 等腰三角形的

9、对称轴 1、体会轴对称图形中的 有几条。 等量关系和由此得到的 特殊位置关系。为下面 6、通过刚才的折叠结合 定理的引出得出有用的 学生观察,体验,领 屏幕上图形的字母,说 结论。 会新概念。 明轴对称图形的等量关 2、感受组间竞争。 系和位置关系。 1、体验从特殊到一般的 集体讨论并互相帮 过程。 助记忆重要的结论。 2、体验合作和竞争的关 每个小组抽查记忆。7、在总结刚才观察结论 系。 的基础上,引出两条重 3、体验原定理和逆定理 要的定理。 的关系。 (不作任何表 学生思考,看书理 述,只做理解) 解,然后讨论每一步 通过小组竞争的方式要 的理由。 求每个同学清晰记忆和 理解定理 2 中

10、的具体条 件。 1、 完成对定理 1 的应用。 小组讨论,并且竞争 体会定理在几何计算中 回答。 的运用。 8、 完成例题 已知 在 2、体会合作精神。 ABC 中, ABAC, B 80° 求 C 和 A 的度数 1、 体会两解可能性的 运用,培养思维的严密 9、完成例题:如果等腰 性。 学生讨论,并且试图 三角形的一个外角等于 2、 注意分类表达的合 写出过程。 140° ,那么等腰三角形 理性和清晰性。 三个内角等于多少度? 1、 对三线合一的使用 2、 结合学生的过程书 10、 完成例题 在ABC 写,体会合情推理。 中,ABAC,D 是 BC 边上的中点, B30

11、° , 求1 和ADC 的度数 学生讨论,通过讨 论,体会数学定理的 使 用 和 数 学 语 言 的 11 、完成例题:建筑工 组织。 人在盖房子的时候,要 1、 体会三线合一在生 看房梁是否水平,可以 活中的使用。 用一块等腰三角形放在 2、 体验数学语言的精 梁上,从顶点系一重物, 练和准确 如果系重物的绳子正好 经过三角板的底边中 点,那么房梁就是水平 的,为什么? 12 、 完 成 例 题 等 腰 学 生 在 自 己 剪 得 的 ABC 中, ABAC, D、 等 腰 三 角 形 上 画 上 E 是 BC 上的两点,若 已知条件,并且观察 BDCE,那么 AD 和 是否相等,

12、然后进行 AE 相等吗?为什么 1、 直观体验轴对称的 相应证明的思考,并 概念,以及应用对称思 积极讨论。 想实现辅助线的寻找 13 、课堂小结:通过今 2、 继续体验合情推理 天的学习,你体会到什 的使用。 么? 14 、有益的思考:通过 学 生 小 组 讨 论 后 发 今天的学习,你有哪些 言。 方法判断剪得的三角形 是等腰三角形。 回顾知识。 开放性问题,自由发 言。 培养学生开放性思维的 运用 第一篇:初中数学教学设计案例初中数学教学案例设计直线与圆的位置关系萍乡六中 马祥志 一、概述 九年制义务教育九年级数学(北师大版)下册第三章第五节“直线 和圆的位置关系” 。本节是探索直线与圆

13、的位置关系,课本通过操作、 观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与 的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并 突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学 生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生 明确图形在运动变化中的特点和规律。 二、设计理念 鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动, 帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学 生动手、动口、动脑和交流,充分展示“观察、操作猜想、探索 说理(有条理地表达) ”的过程,使学生能在直观的基础上学习说 理,体现合情推理和演绎推理的融

14、合,促进学生形成科学地、能动地 认识世界的良好品质。 三、教学目标 (1)激发学生亲自探索直线和圆的位置关系。 (2)通过实践让学生理解直线与圆的三种位置关系相交、相 切、相离的含义。 (3) 探索圆心到直线的距离与半径之间的数量关系和直线与圆的 位置关系之间的内在联系。 (4)让学生们自主讨论通过学习“直线与圆的位置关系”有哪些 收获?在现实生活中有哪些体现? 四、教学重点 直线与圆的三种位置关系相交、相切、相离 从设置情景提出问题,到动手操作、交流,直至归纳得出结论, 整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知 识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有

15、 利于学生更好的理解数学、应用数学。 五、教学难点 探索圆心到直线的距离与半径之间的数量关系和直线与圆的 位置关系之间的内在联系。 六、教学过程 教学步骤 教师活动 学生活动 教学方式 复习过渡 引入新知 点与圆有哪几种 在教师引导下回 由学生归纳总结 位置关系 ? 设 忆前面知识,为 O 的半径为 r,点 探究新知识作好 P 到圆心的距离 准备。 为 d,如何用 d 与 r 之间的数量关 系表示点 P 与 O 的位置关系? 创设情景 欣赏 海上日出 议一议: 学生分组讨论, 图片,感受生活 学生分小组进行 师生互动合作。 中反映直线与圆 讨论,可从直线 的位置关系的现 与圆交点的个数 象。

16、考虑 1 个交点, 2 个交点,没有 交点。 探索活动 对学生分类中 活动一 操作、 经过对各种情 况的分析、 归纳、 出现的问题予以 思考 纠正,对学生提 第一层次:动 总结,对学生渗 出解决问题的不 手操作,并在操 透分类讨论的数 同策略,要给予 作中感受直线与 学思想。 肯定和鼓励,以 圆的位置关系的 满足多样化的学 变化。 生需要,发展学 生个性思维。 (1)直线与圆 的公共点的个数 按照公共点的 有变化。 个 数 进 行 分 类 (2) 圆心到直线 (分三类) 直线 的距离有变化。 与圆有两个公共 第二层次:通 点时叫做直线与 过操作活动引导 圆相交;直线与 学生归纳直线与 圆有唯一

17、公共点 圆的三种位置关 时叫做直线与圆 系。 相切,这条直线 活动二:探索 叫做圆的切线, 圆心到直线的距 这个公共点叫做 离与半径之间的 切点;直线与圆 数量关系和直线 没有公共点时叫 与圆的位置关系 做直线与圆相 之间的内在联 离。 根据学生讨 系。 第一层次 观 论的结果,教师 察垂足与O 的 板书,如果O 三种位置关系, 的半径为 r ,圆 使学生体会到 心 O 到直线的距 这三种位置关系 离为 d,那么 分别同直线与圆 直线 l 与O 的三种位置关系 相交<=>d<r 直线 l 与O 相切<=>d=r 对应。 第二层次 探 索圆心到直线的 直线 l 与O

18、 距离与半径之间 相离<=>d>r 的数量关系和直 线与圆的位置关 系之间的内在联 系。 例题教学 例在ABC 中 关于直线与圆的 引导学生对 A=45 ° , 位置关系,不仅 问题进行分析 AC=4,以 C 为 要理解它的判定 要判定直线 AB 圆心, r 为半径 方法,还应掌握 与C 的位置关 的圆与直线 AB 如何运用该判定 系,就要比较圆 有怎样的位置关 方法判断直线与 心 C 到直线 AB 系?为什么? 圆有怎样的位置 的距离,与 C 的半径的大小。 因此,要作出点 鼓励学生自己 C 到直线 AB 的 (1) r=1, (2) r=2, 关系。 (3)r=

19、3。 巩固运用 拓展提高 在 Rt ABC 中,C=90°, 举出实例,体验 垂线段 CD,由 B=30°,O 是 数学在生活中的 CD 与C 半径 AB 上 一 点 , 应用。 OA=m,O 的 半径为 r ,当 r 与 m 满足怎样 的关系时, (1 ) AC 与 O 相 交?(2)AC 与 O 相切?(3) AC 与 O 相 离? 之间的数量关 系,并可以判定 直线 AB 与C 的位置关系。 检测学生对知 识掌握情况及应 用能力。再次渗 透分类的数学思 想,体会分析的 方法,积累数学 学生在教师引 活动的经验。 反思小结 教师带领学生 提炼规律 回顾反思本节课 导下回

20、顾反思, 对知识的研究探 归纳整理。 索过程,小结方 法及结论,提炼 数学思想,掌握 数学规律。 第一篇:初中数学教学设计案例初中数学教学案例 探索平行线的性质句容市下蜀中学 魏军生 一、案例实施背景 本节课是 2008-2009 学年度第二学期开学第一周笔者在一农村中学的 多媒体教室里上的一节公开课, 课堂中数学优秀生、 中等生及后进生都有, 所用教材为苏科版义务教育课程标准实验教科书七年级数学(下册) 。 二、案例主题分析与设计 本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第 七章第 2 节内容探索平行线的性质,它是直线平行的继续,是后面研 究平移等内容的基础,是“空间与图形

21、”的重要组成部分。作文 数学课程标准强调:数学教学是数学活动的教学,是师生之间、 生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是 孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自 主学习的有效途径。本节课将以“生活·数学”“活动·思考”“表达·应 、 、 用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题 情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获 取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生 相互协作研究,培养学生合作性学习精神。 三、案例教学目标 1、知识与技能:掌握平行

22、线的性质,能应用性质解决相关问题。 2、数学思考 在平行线的性质的探究过程中,让学生经历观察、比较、 联想、分析、归纳、猜想、概括的全过程。 3、解决问题 通过探究平行线的性质,使学生形成数形结合的数学思 想方法,以及建模能力、创新意识和创新精神。 4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感 体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不 舍的精神。 四、案例教学重、难点 1、重点:对平行线性质的掌握与应用 2、难点:对平行线性质 1 的探究 五、案例教学用具 1、教具:多媒体平台及多媒体课件 2、学具:三角尺、量角器、剪刀 六、案例教学过程 (一)创设情境

23、,设疑激思 1、播放一组幻灯片。 内容 供火车行驶的铁轨上; 游泳池中的泳道隔栏; 横格纸中的线。 2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平 行的条件吗? 3、学生活动:针对问题,学生思考后回答 同位角相等两直 线平行; 内错角相等两直线平行; 同旁内角互补两直线平 行; 4、 教师肯定学生的回答并提出新问题 若两直线平行, 那么同位角、 内错角、同旁内角各有什么关系呢?从而引出课题:7.2 探索平行 线的性质(板书) (二)数形结合,探究性质 1、画图探究,归纳猜想 教师提要求,学生实践操作:任意画出两条平行线( a b) ,画 一条截线 c 与这两条平行线相交,标出 8

24、 个角。 (统一采用阿拉伯数字 标角) 教师提出研究性问题一 指出图中的同位角,并度量这些角,把结果填入下表 第一组 同位角 角的度数 数量关系 教师提出研究性问题二 将画出图中的同位角任先一组剪下后叠合。 学生活动一:画图 -度量-填表 -猜想 学生活动二:画图 -剪图-叠合 让学生根据活动得出的数据与操作得出的结果归纳猜想 两直线平 行,同位角相等。 教师提出研究性问题三 再画出一条截线 d,看你的猜想结论是否仍然成立? 学生活动:探究、按小组讨论,最后得出结论:仍然成立。 2、教师用几何画板课件验证猜想,让学生直观感受猜想 3教师展示平行线性质 1:两条平行线被第三条直线所截,同位角相

25、第二组 第三组 第四组 等。 (两直线平行,同位角相等) (三)引申思考,培养创新 教师提出研究性问题四 请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么 关系? 学生活动:独立探究 -小组讨论-成果展示。 教师活动:评价学生的研究成果,并引导学生说理 c 因为 a b (已知) 所以 1 2(两直线平行,同位角相等) 又 1 3(对顶角相等) 1+ 4180°(邻补角的定义) 所以 2 3(等量代换) 2+ 4180°(等量代换) a 3 b 2 4 1 教师展示 平行线性质 2:两条平行线被第三条直线所截,内错角相等。 (两直 线平行,内错角相等) 平行线性质 2:两条平行线被第三条直线所截,同旁内角互补。 (两 直线平行,同旁内角互补) (四)实际应用,优势互补 1、 (抢答)课本 P13 练一练 1、2 及习题 7.2 2、 (讨论解答)课本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论