




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Guideline of Modern analysis for ACM 0711Date: 20070912Part I: Brief Introduction to Modern AnalysisA .以矩形的面积概念过渡至圆的面积概念来阐述1. 洞察一切初等的有限的直观的数学2. 用开放的心灵体味“分析数学是一门取极限的学问”B.中学数学物理的通病:给出具体的函数表达式有碍数学物理的真正发展Part II :数系的发展1. 数系的扩展源于新运算的需要2. 实数系的建立源于极限运算的需要Richard Dedeki nd & Georg Can tor 1872技巧:基于算术基本定
2、理来判定某些代数方程在有理数集中无解Part III :集合的概念1. 枚举法2描述法 相关阅读材料1. 陈纪修於崇华金路:数学分析Part IV:数理逻辑初步相关阅读材料1. 谢惠民恽自求易法槐钱定边:数学分析习题课讲义2. Manfred Stoll: Introduction to Real Analysis如何看待教材中某些独具匠心的证明题的处理1. 尽量读透一个证明的要义在何处 (why and why not are more important than just follow ing the rigorous proof)2 .如果教材中的证明过于富于技巧大家不妨换个角度用自己
3、的理解去证明(Every one should have a personal view poijtDate 20070914中心问题:如何在十进制实数系中引入四则运算?今天将要解决的问题:1. 在实数系中引入加法减法运算2. 解释如何理解作为“数”来看2.999与3.000是一致的Part 1:十进制实数的表示及其全体的集合Part 2:实数的序关系实数的加法运算Part 4:实数的取负运算Part 5:实数的减法运算Part 6:实数系的真正创立Part 7:实数的绝对值运算Part 8:实数的三进制表示法Part 3:相关阅读材料:华罗庚:高等数学引论:Page 5补充思考题:如何实现数
4、在不同进制之间的转换?相关阅读材料:Manfred Stoll: Introduction to Real Analysis: Pages 3034依旧需要解决的问题:如何在十进制实数系中引入乘法除法运算?Date 20070917如何在实数系中引入乘法除法运算依然是目前亟须解决的中心问题1 .将十进制表示法革命到底:类似定义加法运算去定义乘法运算(You can havea try)2. 另辟蹊径:单调有界数列必有极限 1.3数列和收敛数列例:1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,例:0.9, 0.99, 0.999, 0.9999, 0.99999,中心含义:指标
5、越来越大误差越来越小收敛数列的概念(为定义数列极限而引进的-N语言是由德国著名数学家 KarlWeierstrass所创立。Weierstrass是一位大器晚成的数学家,他与Cauchy, Bolzano 一道为推动分析严密化运动做出了卓越的贡献)1. 第一步确立误差标准2. 第二步确立达到误差标准所需的起始指标 例:1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,例:1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,1 .确立误差标准2. 确立达到误差标准所需的最小起始指标(这是更加深入的收敛速度问题)最常见的误差标准:c/log_a n (a>1)
6、 & c/n a ( a>0) & c/an (a>1)这样的习惯对于解证明题是有帮助的)发散数列的精确定义(写出原命题的否命题在初学阶段作为更好理解数理逻辑的 有效途径应该多尝试,V.S.数列a_n不以a为极限V.S.数列a_n是发散数列数列a_n以a为极限数列a_n是收敛数列1.4收敛数列的性质定理:收敛数列的极限是唯一的 概念:有上界,有下界,有界 定理:收敛数列是有界的1.6单调数列概念:单调数列定理:单调有界数列是收敛数列(实数系基本定理)(实数系具有完备性)应用:1. 乘法除法的引入2. 幕函数的引入3. 对数函数的引入Dates 20070919 &a
7、mp; 20070921实数系基本定理之一:单调有界数列是收敛数列0. x_n B单调有上界数列必有落于B中的极限(缜密的逻辑)1.乘法除法的引入2幕函数以及对数函数的引入Part I:最常见的误差标准:c/log_a n (a>1) & c/nA a (o>0) & c/aAn (a>1)例1:例2:例3:例4:例5:1/log_10 n 1/n 1/2An (log_10 n)/n n /2AnGen eral cases Gen eral cases Gen eral casesGen eral cases Gen eral casesc/log_a n
8、 (a>1)c/nA a( a>0)c/an (a>1)log_a n/nAa(a>1, a>0) nA o/an (a>0,a>1)Part II :基本定理定理1.6:夹逼定理(夹挤定理,两边夹定理)例:nA1/n (Method 1:几何算术平均不等式 & Method 2:例5使然)例:a1/n (a>0)定理1.7:极限的保序性例:0 三 a_na imp lies a = 0定理1.5:极限的四则运算(予以传统方式地论证)例:设有£_n0以及a>0.则成立:(1+ Ln)Aa 1.little trick: (
9、1-|_n|) A(a+1)三(1-|_n|) Aa三(1+_n)Aa三(1+| _n|) Aa 三(1+l _n|) A(a+1)平淡的观察:设有实数列a_n和实数a>0.求证:a_na等价于a_n/a 1.LLP的讲义:定义数列收敛的 -N语言不是唯一定理: Cauchy 定理例:反复使用Cauchy定理例:迭代数列的收敛速度与发散速度(LLP06 秋:数学分析习题课讲义:Page 30例:谢惠民恽自求易法槐钱定边:数学分析习题课讲义:Page 35例题2.4.2The same idea Stolz 定理例: Cauchy 定理(There are no essential dif
10、ferenee between Cauchy and StOlz例:(1你+2你+nk)/n (k+l) 1/(k+1)处理问题时建议Part I & Part II联合使用Date 20709241.基于素数分布定理解决教材:Page 8问题1.2: 1相关阅读材料:数论概论:Cha pter 13: by Jose ph H. Silverman(知晓一些有关素数的知识还是饶有趣味的)2 .和积互化&差商互化exp( a+b)=ex p( a)ex p(b)ln( ab)=l n(a)+l n(b)例:徐森林薛春华:数学分析:Page 23例1.2.6Part III :三
11、个基本常数1.圆周率 n=3.141 592 653 589 793 圆的周长与圆的直径的比率2. 自然对数底 e=2.718 281 828 459 045 等分正数如何使各部分乘积最大?导函数与原函数一致论证引入欧拉常数的两种极限是一致的3 .欧拉常数 Y0.577 215 664 901 532 调和级数紧密联系Gamma函数(阶乘函数在非整数情形下的推广) 有理数?无理数?Part IV :迭代数列的蜘蛛网工作法决定性现象(自由落体运动)V.S.统计现象(掷硬币)单调现象V.S.周期现象例题2.6.1 :单调有界例题2.6.2:回旋振荡建议:基于(Maple,Matlab,Mathem
12、atica,C)数列的前20项的观察先归纳后证明相关阅读材料:苏州大学习题课讲义:P ages 4652Leon hard EulerLeon hard Euler was born on April the 15th 1707 as the son of a Protestant min ister in Basel (Switzerla nd). Already in his childhood he exhibited great mathematical tale nts, but his father wan ted him to study theology and become
13、a mini ster. I n 1720 Euler bega n his studies at the Uni versity of Basel. There Euler met Daniel and Nikolaus Berno ulli, who no ticed Euler's skills in mathematics. P aul Euler, Leon hard's father, had atte nded Jakob Berno ulli's mathematical lectures and res pected his family. When
14、Dan iel and Nikolaus Berno ulli asked him to allow his son to study mathematics he fin ally agreed and Euler bega n to study mathematics.In 1727 Euler was called to St. P etersburg by Catheri ne I. and became pro fessor of p hysics in 1730. Fin ally in 1733 he became pro fessor of mathematics. His w
15、ork was both in p hysics and mathematics. Euler was the first to p ublish a systematic in troductio n to mecha nics in 1736:“ Mecha nicasive motus scientia analytice exposita” (Mechanics or motion explained withan alytical scie nee (that is, calculus). 1735 he lost much of his visi on in the right e
16、ye because he had looked into the sun for too long.In 1733 he married Kathari na Gsell, the daughter of the director of the academy of arts. They had thirtee n childre n, of whom only three sons and two daughters survived. The desce ndants of these childre n, however, were in high po siti ons in Rus
17、sia in the 19th cen tury.In the year 1741 Euler went to the Prussia n Academy of Scie nces in Berli n and became director of the mathematical class. His time in Berli n was very p roductive; however, he did not have an easy po siti on because he was not much liked by the king. Therefore he retu rned
18、 to St. Petersburg in 1766, now ruled by Catheri ne II., where he would remai n for the rest of his life.Also in that time Euler was very p roductive, though he very soon lost his visio n comp letely. This was po ssible because he had an extraordi nary memory and could calculate very well. It is rep
19、 orted that once he let his assista nt calculate a series to 17 summa nds and no ticed that his own result and the assista nt's result differed in the 50th digit. A recalculati on showed that Euler was right!It has bee n calculated that it would take 50 years eight-hour work per day to copy all
20、his works by han d. It was not till the year 1910 that a collect ion of his comp lete works was p ublished and it took about 70 volumes. It is rep orted by Lege ndre that ofte n he would write dow n a compi ete mathematical p roof betwee n the first and the sec ond call for supper.In con trast to mo
21、st in tellectuals of his time he was con servative and a convin ced Christia n. There is a story, which is ofte n told in books and on the web, say ing that once at the court of Catheri ne the Great he met the French p hilos op her Den is Diderot, who was a convin ced atheist and tried to convince t
22、he Russia ns of atheism, much to the annoyance of Catheri ne. Therefore she asked Euler to stop him. Euler thought about it and whe n Catheri ne in vited Diderot to have a theological discussi on with Eu ler, Euler said:(a+bh )/n=x,therefore God exists, an swer!” Diderot, who knew almost no thi ng a
23、boutalgebra knew not what to an swer and therefore returned to P aris. This story however is almost certai niy an urba n myth and Diderot knew eno ugh algebra to an swer Euler. However it is said that Euler p ublished some other (not really serious) proofs of the existe nee of God, which may well be, since at that time people were won deri ng about the p ossibility to give an algebraic proof of the existe nee of God.When Euler died on 18th of Sep tember 1783 the mathematicia n andp hilos op her Marquis de Con dorcet saidet iicessa de calcul
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 收纳师考试的前期准备试题及答案
- 2024年系统分析师考试知识更新试题及答案
- 多媒体应用设计师色彩运用技巧试题及答案
- 2024年珠宝鉴定师考试的复赛准备 - 试题及答案
- 2024年 收纳师考试必背知识要点试题及答案
- 定期更新的公务员省考试题及答案
- 咖啡师职业技能测试试题及答案
- 2024年食品安全员考试重要文件:试题及答案
- 二级建造师考试的法律法规总结试题及答案
- 施工过程中的安全常识题试题及答案
- 形势与政策(吉林大学)智慧树知到答案章节测试2023年
- 用户中心积分成长值体系需求文档
- 2021商超全年52周企划MD营销销售计划培训课件-96P
- 05价值观探索-职业生涯规划
- 劳务派遣用工管理办法
- 初中数学人教七年级下册第七章 平面直角坐标系 平面直角坐标系中图形面积的求法PPT
- 颊癌病人的护理查房
- 特种设备使用登记表(范本)
- 汉译巴利三藏相应部5-大篇
- YSJ 007-1990 有色金属选矿厂 试验室、化验室及技术检查站工艺设计标准(试行)(附条文说明)
- 水利水电工程专业英语——水工结构篇
评论
0/150
提交评论