电磁感应中常见模型_第1页
电磁感应中常见模型_第2页
电磁感应中常见模型_第3页
电磁感应中常见模型_第4页
电磁感应中常见模型_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电磁感应中的常见模型学案一、单杆模型1如图水平放置的光滑平行轨道左端与一电容器C相连,导体棒ab的电阻为R,整个装置处于竖直向上的匀强磁场中,开始时导体棒ab向右做匀速运动;若由于外力作用使棒的速度突然变为零,则下列结论的有( BD )BC a bA此后ab棒将先加速后减速Bab棒的速度将逐渐增大到某一数值C电容C带电量将逐渐减小到零D此后磁场力将对ab棒做正功2如图两个粗细不同的铜导线,各绕制一单匝矩形线框,线框面积相等,让线框平面与磁感线方向垂直,从磁场外同一高度开始同时下落,则( A )BA两线框同时落地B粗线框先着地C细线框先着地D线框下落过程中损失的机械能相同3如图所示,在竖直向上磁

2、感强度为B的匀强磁场中,放置着一个宽度为L的金属框架,框架的右端接有电阻R。一根质量为m,电阻忽略不计的金属棒受到外力冲击后,以速度v沿框架向左运动。已知棒与框架间的摩擦系数为,在整个运动过程中,通过电阻R的电量为q,求:(设框架足够长)(1)棒运动的最大距离;(2)电阻R上产生的热量。答案:(1)设在整个运动过程中,棒运动的最大距离为S,则=BLS又因为q=BLS/R,这样便可求出S=qR/BL。(2)在整个运动过程中,金属棒的动能,一部分转化为电能,另一部分克服摩擦力做功,根据能量守恒定律,则有mv2/2=E+mgS又电能全部转化为R产生的焦耳热即E=Q由以上三式解得:Q=mv2/2-mg

3、qR/BL。4如图固定在水平桌面上的金属框cdef处在竖直向下的匀强磁场中,金属棒ab搁在框架上可无摩擦地滑动,此时构成一个边长为L的正方形,棒的电阻为r,其余部分电阻不计,开始时磁感应强度为B若从t=0时刻起,磁感应强度均匀增加,每秒增量为k,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向;在上述情况中,始终保持静止,当t=t1s末时需加的垂直于棒的水平拉力为多大?若从t=0时刻起,磁感应强度逐渐减小,当棒以恒定速度v向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B与t的关系式)?d a ce b fB0答案: ba,(B+kt1),5如图电容为C的

4、电容器与竖直放置的金属导轨EFGH相连,一起置于垂直纸面向里,磁感应强度为B的匀强磁场中,金属棒ab因受约束被垂直固定于金属导轨上,且金属棒ab的质量为m、电阻为R,金属导轨的宽度为L,现解除约束让金属棒ab从静止开始沿导轨下滑,不计金属棒与金属导轨间的摩擦,求金属棒下落的加速度a bCEFGHB答案:6如图,电动机用轻绳牵引一根原来静止的长l=1m,质量m=0.1kg的导体棒AB,导体棒的电阻R=1,导体棒与竖直“”型金属框架有良好的接触,框架处在图示方向的磁感应强度为B=1T的匀强磁场中,且足够长,已知在电动机牵引导体棒时,电路中的电流表和电压表的读数分别稳定在I=1A和U=10V,电动机

5、自身内阻r=1,不计框架电阻及一切摩擦,取g=10m/s2,求:导体棒到达的稳定速度?VABA答案:4.5m/s 二、双杆1如图所示,两金属杆ab和cd长均为L,电阻均为R,质量分别为M和m。现用两根质量和电阻均可忽略不计且不可伸长的柔软导线将它们连接成闭合回路,并悬挂于水平、光滑、不导电的圆棒两侧。已知两金属杆都处于水平位置,整个装置处在一个与回路平面垂直磁感强度为B的匀强磁场中,求金属杆ab向下做匀速运动时的速度。abcd析与解 当金属杆ab以速度v向下做匀速运动时,cd杆也将以速度v向上做匀速运动,两杆同时做切割磁感线运动,回路中产生的感应电动势为E=2BLv。分别以ab杆和cd杆为研究

6、对象进行受力分析,画出受力分析图如图所示,根据力学平衡方程、则:Mg=BIL+TT=mg+BIL又因为I=E/R总=BLv/R,所以V=(M-m)gR/(2B2L2)。或者以系统为对象,由力的平衡求解。2如图所示,平行导轨MN和PQ相距0.5m,电阻忽略不计。其水平部分粗糙,倾斜部分光滑。且水平部分置于B=0.6T竖直向上的匀强磁场中,倾斜部分处没有磁场。已知导线a和b的质量均为0.2kg,电阻均为0.15,开始时a、b相距足够远,b放置在水平导轨上,现将a从斜轨上高0.05m处由静止开始释放,求:(g=10m/s2)。(1)回路中的最大感应电流是多少?(2)如果导线和导轨间动摩擦因数=0.1

7、,当导线b的速度最大时,导线a的加速度是多少?分析与解:(1)当导线a沿倾斜导轨滑下时,根据机械能守恒定律,导线a进入水平导轨时速度最大,即vmm/s。此时,导线a开始做切割磁感线运动,回路中产生的感应电流最大,即Im=Em/R=BLvm/(2r)=1A。(2)经分析可知,当导线b的速度达到最大值时,导线b所受的安培力与摩擦力大小相等,方向相反,即umg=BIL,此时导线a受到的摩擦力和安培力方向都向右,即F=mg+BIL=2mg。根据牛顿第二定律,导线a产生的加速度为a=F/m=2g=20m/s2,方向水平向右。三、线框1在如图所示的倾角为的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场

8、,区域I的磁场方向垂直斜面向上,区域的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间位置的过程中,线框的动能变化量大小为Ek,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有( CD )PJGaHNMdcbIA在下滑过程中,由于重力做正功,所以有v2v1。B从ab进入GH到MN与JP的中间位置的过程中,机械能守恒。C从ab进入GH到MN与J

9、P的中间位置的过程,有(W1+Ek)机械能转化为电能。D、从ab进入GH到MN与JP的中间位置的过程中,线框动能的变化量大小为Ek= W2W1。2如图所示,相距为d的两水平直线和分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m。将线框在磁场上方ab边距为h处由静止开始释放,当ab边进入磁场时速度为,cd边刚穿出磁场时速度也为。从ab边刚进入磁场到cd边刚穿出磁场的整个过程中( B )A线框一直都有感应电流B线框一定有减速运动的过程C线框不可能有匀速运动的过程D线框产生的总热量为mg(d+h+L)3(2006年普通高等学校夏季招生考试物理

10、上海卷)如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动求:(1)线框在下落阶段匀速进人磁场时的速度v2;(2)线框在上升阶段刚离开磁场时的速度v1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q Bba解:(1)线框在下落阶段匀速进入磁场瞬间mg = f + 解得v2 = (2)线框从离开磁场至上升到最高点的过程(mg + f ) h = mv

11、1 2 线框从最高点回落至磁场瞬间(mg - f ) h = mv2 2 、 式联立解得v1 = = (3)线框在向上通过通过过程中mv02 - mv12 = Q +(mg + f)(a + b)v0 = 2 v1 Q = m (mg)2 f 2 -(mg + f)(a + b)评分标准:本题共14分。第(1)小题4分,得出、式各2分;第(2)小题6分,得出、式各2分,正确得出结果式2分,仅得出式1分;第(3)小题4分,得出、式各2分。4如图所示,倾角为370的光滑绝缘的斜面上放着M=1kg的导轨abcd,abcd。另有一质量m=1kg的金属棒EF平行bc放在导轨上,EF下侧有绝缘的垂直于斜面

12、的立柱P、S、Q挡住EF使之不下滑,以OO为界,斜面左边有一垂直于斜面向下的匀强磁场。右边有平行于斜面向下的匀强磁场,两磁场的磁感应强度均为B=1T,导轨bc段长L=1m。金属棒EF的电阻R=1.2,其余电阻不计,金属棒与导轨间的动摩擦因数=0.4,开始时导轨bc边用细线系在立柱S上,导轨和斜面足够长,当剪断细线后,试求:(1)求导轨abcd运动的最大加速度;(2)求导轨abcd运动的最大速度;(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF的电量q=5C,则在此过程中,系统损失的机械能是多少?(sin370=0.6)解:(1)对导轨进行受力分析有:其中 1 对棒: 1 则导轨的加速度

13、: 3 可见当v=0时,a最大: 1 2 (2)当导轨达到最大速度时受力平衡即a=0,此时: 1 3(3)设导轨下滑距离d时达到最大速度 , 1 d=6m 1 对导轨由动能定理得: 1 损失的机械能W=20.32J5(07重庆)在t=0时,磁场在xOy平面内的分布如图所示,其磁感应强度的大小均为B0,方向垂直于xOy平面,相邻磁场区域的磁场方向相反。每个同向磁场区域的宽度均为l0。整个磁场以速度沿x轴正方向匀速移动。若在磁场所在区域,xOy平面内放置一由n匝线圈串联而成的矩形导线框abcd,线框的bc边平行于x轴,bc=l0,ab=L,总电阻为R,线框始终保持静止,求线框中产生的总电动势大小和

14、导线中的电流大小;线框所受安培力的大小和方向。该运动的磁场可视为沿x轴传播的波,设垂直于纸面向外的磁场方向为正,画出t=0时磁感应强度的波形图,并求波长和频率f。abdcl0l0vxyO【解析】导线框相对磁场以速度沿x轴负方向匀速移动,依据右手定则知ab、cd边切割磁感线各自产生的感应电流方向相同(均沿顺时针方向),每匝线圈产生的电动势大小为因n匝线圈串联,所以总电动势大小为依据闭合电路欧姆定律得导线中的电流大小为依据左手定则知线框ab、cd边电流所受安培力均沿正x方向,ad、bc边在相邻磁场区域内所受安培力方向相反(右面部分向外、左面部分向里),并且上下两边左面部分线框所受安培力大小相等,右

15、面部分线框亦然,故线框所受安培力的合力方向应该沿x轴正方向;依据安培力公式知每匝线圈所受安培力大小为n匝线圈所受安培力合力大小32由得。将运动的磁场看作沿x轴传播的波时,在指定区域里磁场作周期性振荡,磁感应强度大小不变,方向呈现周期性变化,因此在既定正方向的条件下,t=0时磁感应强度的波形应为图示矩形波。据空间周期性知波长,依据得频率。注:该问题主要考查已有方法的迁移运用能力。6如图所示,在倾角为的光滑的斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,一个质量为m,边长也为L的正方形线框(设电阻为R)以速度v进入磁场时,恰好做匀速直线运动.若当

16、ab边到达gg与ff中间位置时,线框又恰好做匀速运动,则:(1)当ab边刚越过ff时,线框加速度的值为多少?(2)求线框开始进入磁场到ab边到达gg与ff中点的过程中产生的热量是多少?【解析】此题旨在考查电磁感应与能量之间的关系.线框刚越过ff时,两条边都在切割磁感线,其电路相当于两节相同电池的串联,并且这两条边还同时受到安培力的阻碍作用.(1)ab边刚越过ee即做匀速直线运动,表明线框此时所受的合力为0,即在ab边刚越过ff时,ab、cd边都切割磁感线产生感应电动势,但线框的运动速度不能突变,则此时回路中的总感应电动势为E=2BLv,设此时线框的加速度为a,则2BEL/R-mgsinq=ma

17、,a=4B2L2v/(Rm)-gsinq=3gsinq,方向沿斜面向上. (2)设线框再做匀速运动时的速度为v,则mgsinq=(2B2L2v/R)×2,即v=v/4,从线框越过ee到线框再做匀速运动过程中,设产生的热量为Q,则由能量守恒定律得:【解题回顾】电磁感应过程往往涉及多种能量形式的转化,适时选用能量守恒关系常会使求解很方便,特别是处理变加速直线运动或曲线运动问题.7如图所示,金属框中ad、be、cf段导体长均为L,电阻均为R,且导体abc和def的电阻均忽略不计。金属框处在一个垂直于纸面向里磁感强度为B的匀强磁场中,在外力作用下以速度v向左匀速拉出,求:(1)金属框运动到图

18、示位置时,各段导体中的电流强度;(2)作用在金属框上的外力。析与解 (1)金属框运动到图示位置时,be和cf两段导体切割磁感线,产生的感应电动势均为E=BLv,画出等效电路图如图所示,根据电源并联的特点可知,通过导体ad的电流强度为I=E/(R+R/2)=2BLv/3R,通过导体be和cf的电流均为I=I/2=BLv/(3R)。(2)将be和cf视为一个“整体”,由左手定则可知,be和ef在磁场中所受的安培力方向向右,大小为F=BIL+2B2L2v/(3R),由于整个线框做匀速运动,所以作用在金属框上的外力F=F=2B2L2v/(3R),方向向左。8随着越来越高的摩天大楼在各地的落成,至今普遍

19、使用的钢索悬挂式电梯已经渐渐地不适用了。这是因为钢索的长度随着楼层的增高而相应增加,这样钢索会由于承受不了自身的重量,还没有挂电梯就会被扯断。为此,科学技术人员正在研究用磁动力来解决这个问题。如图6所示就是一种磁动力电梯的模拟机,即在竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B1和B2,且B1和B2的方向相反,大小相等,即B1=B2=1T,两磁场始终竖直向上作匀速运动。电梯桥厢固定在如图6所示的一个用超导材料制成的金属框abcd内(电梯桥厢在图6中未画出),并且与之绝缘电梯载人时的总质量为,所受阻力f=500N,金属框垂直轨道的边长Lcd =2m,两磁场的宽度

20、均与金属框的边长Lac相同,金属框整个回路的电阻,假如设计要求电梯以v1=10m/s的速度向上匀速运动,那么, (1)磁场向上运动速度v0应该为多大?(2)在电梯向上作匀速运动时,为维持它的运动,外界必须提供能量,那么这些能量是由谁提供的?此时系统的效率为多少?解析:(1)当电梯向上匀速运动时,金属框中感应电流大小为(1) 金属框所受安培力(2)安培力大小与重力和阻力之和相等,所以(3)由(1)(2)(3)式求得:v0=13m/s。(2)运动时电梯向上运动的能量由磁场提供。磁场提供的能量分为两部分,一部分转变为金属框的内能,另一部分克服电梯的重力和阻力做功当电梯向上作匀速运动时,金属

21、框中感应电流由(1)得:金属框中的焦耳热功率为:  (4) 而电梯的有用功率为:  (5) 阻力的功率为: (6) 从而系统的机械效率  (7) 点评:此题的实质是利用了金属导体切割磁感线产生感应电动势,从而产生了安培力,由于出现了相对运动,切割速度必须是相对速度有的同学不能从能量角度来分析问题,不能找出能量的来源。9如图所示,线圈每边长L0.20,线圈质量10.10、电阻0.10,砝码质量20.14线圈上方的匀强磁场磁感强度0.5,方向垂直线圈平面向里,磁场区域的宽度为L0.20砝码从某一位置下降,使边进入磁场开始做匀速运动求线圈做匀速运动的速度解析:该题的研究

22、对象为线圈,线圈在匀速上升时受到的安培力安、绳子的拉力和重力1相互平衡,即安1图33-1砝码受力也平衡:2线圈匀速上升,在线圈中产生的感应电流L,因此线圈受到向下的安培力安L联解式得(21)2L2代入数据解得:4()10如图,光滑斜面的倾角= 30°,在斜面上放置一矩形线框abcd,ab边的边长l1 = l m,bc边的边长l2= 0.6 m,线框的质量m = 1 kg,电阻R = 0.1,线框通过细线与重物相连,重物质量M = 2 kg,斜面上ef线(efgh)的右方有垂直斜面向上的匀强磁场,磁感应强度B = 0.5 T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线

23、和gh的距离s = 11.4 m,(取g = 10.4m/s2),求:(1)线框进入磁场前重物M的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh线处所用的时间t;(4)ab边运动到gh线处的速度大小和在线框由静止开始到运动到gh线的整个过程中产生的焦耳热。解:(1)线框进入磁场前,线框仅受到细线的拉力FT,斜面的支持力和线框重力,重物M受到重力和拉力FT。对线框,由牛顿第二定律得FT mg sin= ma.联立解得线框进入磁场前重物M的加速度=5m/s2(2)因为线框进入磁场的最初一段时间做匀速运动所以重物受力平衡Mg = FT,线框abcd受力平衡FT= m

24、g sin+ FAab边进入磁场切割磁感线,产生的电动势E = Bl1v形成的感应电流受到的安培力联立上述各式得Mg = mg sin+代入数据解得v=6 m/s(3)线框abcd进入磁场前时,做匀加速直线运动;进磁场的过程中,做匀速直线运动;进入磁场后到运动到gh线,仍做匀加速直线运动。进磁场前线框的加速度大小与重物的加速度相同,为a = 5 m/s2该阶段运动时间为进磁场过程中匀速运动时间线框完全进入磁场后线框受力情况同进入磁场前,所以该阶段的加速度仍为a = 5m/s2解得:t3 =1.2 s因此ab边由静止开始运动到gh线所用的时间为t = t1+t2+t3=2.5s(4)线框ab边运动到gh处的速度v=v + at3 = 6 m/s+5×1.2 m/s=12 m/s整个运动过程产生的焦耳热Q = FAl2 =(Mg mgsin)l2 = 9 J四、杆框1如图所示,P、Q为水平面内平行放置的光滑金属长直导轨,间距为L1,处在竖直向下、磁感应强度大小为B1的匀强磁场中。一导体杆ef垂直于P、Q 放在导轨上,在外力作用下向左做匀速直线运动。质量为m、每边电阻均为r、边长为L2的正方形金属框abcd置于竖直平面内,两顶点a、b通过细导线与导轨相连,磁感应强度大小为B2的匀强磁场垂直金属框向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论