版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2019-2020学年湖北省武汉市汉阳区八年级(下)期中数学试卷、选择题(每题3分,共30分)1. (3分)要使代数式后应有意义,则乂的()A.最大值是看B.最小值是卷C.最大值是:D.最小值是:2. (3分)若也3寸产=3-b,则b满足的条件是()A. b>3B. b<3C. b>3D. b<33. (3分)下列根式中,不能与 行合并的是()A 5 B/C飞D"4. (3分)如图,RtABC中,/ACB=90 ,若AB=15cm则正方形ADE明正方形BCFG的面积和为()FGA. 150cm2 B. 200cm2 C. 225cm2 D.无法计算5. (3分
2、)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1: 2: 3 B.三边长的平方之比为 1: 2: 3C.三边长之比为 3: 4: 5 D.三内角之比为3: 4: 56. (3分)一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A. 9分米 B. 15分米C. 5分米 D. 8分米7. (3分)一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A. 88°,108° ,88°B. 88° ,104°, 108°C. 88°,9
3、20 , 920D. 88° ,92°, 88°8. (3分)数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4位同学拟定的方案,其中正确的是(A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D .测量三个角是否为直角9. (3分)如图,已知四边形 ABCLfr, R, P分别是BC, CD上的点,E, F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()B R CA.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关10.
4、(3 分)如图,菱形 ABCLfr, AB=2 /A=120° ,点 P, Q K分别为线段 BC, CDBD上的任意一点,则PK+QK勺最小值为()A. 1B.:: C. 2 D.二十1二、填空题(每题3分,共18分)11. (3分)在实数范围内分解因式:x2-3=.12. (3分)平行四边形ABCD勺周长是18,三角形ABC的周长是14,则对角线AC的长 是 .13. (3分)如图,矩形ABCD勺对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F, AB=2 BC=3则图中阴影部分的面积为.E DB F C14. (3分)如图,菱形中,对角线 AG BD交于点O
5、, E为AD边中点,菱形ABCD勺周长为28,则OE的长等于15. (3分)已知 a, b为实数,且V 1+a- (b- 1) a/1H>=05贝U a-b2016的值为16. (3 分)/XABC, AB=15 AC=13 高 AD=12 则ABC勺面积为 三、解答题(共8题,共72分)17. (8分)计算(1) 4 2十.二:一 I:18. (8分)先化简,再求值 三二I2券一一其中x=/3+/2, y/一也.x -y h y19. (8分)如图,在?ABCm,E、F分别是AB DC边上的点,且 AE=CF(1)求证 AD图ACBF(2)请你添加一个条件,使四边形 DEBF1矩形(不
6、用证明).D 尸 C20. (8分)如图在10X 10的正方形网格中,4ABC的顶点在边长为1的小正方形的顶 百上 八、一L-(1)计算AG AB, BC的长度,并判定 ABC的形状;(2)若在网格所在的坐标平面内的点 A, C的坐标分别为(0, 0), ( - 1, 1).请你在 图中找出点D,使以A B C、D四个点为顶点的四边形是平行四边形,直接写出满足 条件的D点的坐标.21. (8分)(1)以a, b为直角边,c为斜边作两个全等的RtABE与RtzXFC所成如图1所示的图形,使B, E, F, C四点一在一条直线上(此时E, F重合),可知4AB昭 FCD AE! DF,请你证明:a
7、2+b2=c2;(2)在(1)中,固定 FCD再将 ABE沿着BC平移到如图2的位置(此时B, F重 合),请你重新证明:a2+b2=c2.22. (10分)定义:如图1,点M, N把线段AB分割成AM MNff口 BN,若以AM MN BN为边的三角形是一个直角三角形,则称点 M N是线段AB的勾股分割点.(1)已知点M N是线段AB的勾股分割点,若 AM=3 MN=5求BN的长;(2)如图 2,在 RtAABO, AC=BC,点 M N在斜边 AB上,/ MCN=45 ,求证:点 MN是线段AB的勾股分割点.23. (10分)如图,在菱形ABCLfr, F为边BC的中点,DF与对角线AC交
8、于点M,过M作 MEL CDT点 E, / BACW CDF(1)求证:BC=2CE(2)求证:AM=DF+ME24. (12分)如图,在矩形ABCm,E是BC上一动点,将 ABE沿AE折叠后得到 AFE点F在矩形ABC呐部,延长 AF交CDT点G, AB=3 AD=4(1)如图1,当/DAG=30时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当 CFE的周长最小时,直接写出BE的长.参考答案与试题解析一、选择题(每题3分,共30分)1. (3分)要使代数式后公有意义,则乂的(A.最大值是卷B.最小值是4C.最大值是二D.【解答】解:二代数
9、式 出五有意义,<12- 3x>0,解得 x0二.故选:A.2. (3分)若或3寸)2=3-b,则b满足的条件是(A. b>3 B. b<3C. b>3 D. b<3【解答】解:V U(3-b)2=3- b,.-3- b>0,解得:b<3.故选:D.3. (3分)下列根式中,不能与合并的是(A.C.【解答】解:A "卜匚可以与后合并;可以与百合并;.不可以与 百合并;D.= V12=2/3,可以与百合并;故选:C.4. (3分)如图,RtABC中,/ACB=90 ,若AB=15cm则正方形ADE明正方形BCFG 的面积和为()A. 15
10、0cm2 B. 200cm2C. 225cm2 D.无法计算【解答】解:正方形ADEC勺面积为:AC, 正方形BCFG勺面积为:BC;在 RQABCt, A隹AC+BC, AB=15贝U AC+BC=225cml故选:C.5. (3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1: 2: 3 B.三边长的平方之比为 1: 2: 3C."三边长之比为3: 4: 5 D.三内角之比为3: 4: 5【解答】解:A、根据三角形内角和公式,求得各角分别为 30。,60。,90。,所以此 三角形是直角三角形;R三边符合勾股定理的逆定理,所以其是直角三角形;G 32+42=52
11、,符合勾股定理的逆定理,所以是直角三角形;D根据三角形内角和公式,求得各角分别为 45。,60。,75。,所以此三角形不是直 角三角形; 故选:D.6. (3分)一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如 果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A. 9分米 B. 15分米C. 5分米 D. 8分米【解答】解:如下图所示:AB相当于梯子, ABO是梯子和墙面、地面形成的直角三 角形,zOC此下滑后的形状,/ 0=90 ,即:AB=CD=2分米,0B二份米,AC=4分米,BD是梯脚移动的距离.在RtAC-,由勾股定理可得:A隹aC+bC,AC=/aB 2包2=2
12、4 分米. . OC=AC AC=2+ 4=2 分米,在RtzXCODK由勾股定理可得:cD=oc+oD ,OD=1吩米,BD=ODOB=15- 7=8 分米,故选:D.W.5米 cR/Mil川Will川川阳7. (3分)一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A. 88° ,108° ,88°B.88°,104° , 108°C. 88° ,92° , 92°D.88°,92° , 88°【解答】解:两组对角分别相等的四边形是平行四边形,故 B不是
13、;当三个内角度数依次是88° , 108° , 88°时,第四个角是76° ,故A不是;当三个内角度数依次是88° , 92 , 92 ,第四个角是88° ,而C中相等的两个角不 是对角故C错,D中满足两组对角分别相等,因而是平行四边形.故选:D.8. (3分)数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量三个角是否为直角【解答】解:A、对角线是否相互平分,只能判定平行四边形;R两组对
14、边是否分别相等,只能判定平行四边形;G 一组对角是否都为直角,不能判定形状;D其中四边形中三个角都为直角,能判定矩形.故选:D.9. (3分)如图,已知四边形 ABCDfr, R, P分别是BC, CD上的点,E, F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()B R CA.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关【解答】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR且等于AR的 一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选:C.10. (3 分)如图,菱
15、形 ABCDfr, AB=2 /A=120° ,点 P, Q K分别为线段 BC, CDA. 1B,:; C. 2 D,1十1【解答】解::四边形 ABCD1菱形,.AD/ BC, /A=120° , ./B=180° /A=180° - 120° =60° 作点P关于直线BD的对称点P',连接P' Q P' C,则P' Q的长即为PK+QK勺最小 值,由图可知,当点Q与点C重合,CP,AB时PK+QK勺值最小,在 Rt ABCP 中,v BC=AB=2 / B=60° ,.P' Q=
16、CP =BC?sinB=2X=/3.故选:B.B p C/Q二、填空题(每题3分,共18分)11. (3分)在实数范围内分解因式:x2-3= (x+E)(x-爪).【解答】解:x2-3=x2-(百)2= (x+'/3) (x-h/3).12. (3分)平行四边形ABCD勺周长是18,三角形ABC的周长是14,则对角线AC的长 是 5 .【解答】解::平行四边形 ABCD勺周长是18 .AB+BC=182=9.三角形ABC勺周长是14 .AC=14 (AB+AC =5故答案为5.13. (3分)如图,矩形ABCD勺对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F, A
17、B=2 BC=3则图中阴影部分的面积为3 .E DB F C【解答】解::四边形 ABCD1矩形, . OA=OC / AEO= CFO又. /AOEW COF在AOEffi CON,rZAE0=ZCF0 040 c,lZAOE=ZCOF. .AO昌 ACOFSAO=SCO弓图中阴影部分的面积就是 BCD勺面积.Sa bcDBCX CD=- X2X 3=3.故答案为:3.菱形ABCD勺周14. (3分)如图,菱形中,对角线 AG BD交于点O, E为AD边中点, 长为28,则OE的长等于 3.5.【解答】解:二.菱形ABCD勺周长为28,.AB=28 4=7, OB=OD.E为AD边中点, .
18、OE是 ABD的中位线,1 1OE=7AB=tX 7=3.5.故答案为:3.5 .的值为 -215. (3分)已知 a, b为实数,且(b1)近W=0,则 a2015b2016【解答】解:: VbHa- (b-1) h/14>=0,什(1- b)=0,V1- b> 0, .1+a=0, 1 - b=0,解得 a= - 1, b=1,.a2015-b2016= (T) 2015 - 12016=- 1 - 1 = - 2.故答案为:-2.16. (3 分)ABC, AB=15 AC=13 高 AD=12 则ABC勺面积为 24 或 84【解答】解:分两种情况考虑:当4ABC为锐角三角
19、形时,如图1所示, .ADL BC, ./ADBW ADC=90 ,在ABDt, AB=15 AD=12根据勾股定理得:BD=1-1=9,在ADCt, AC=13 AD=12根据勾股定理得:DC=;,?.:. :,. =5, . BC=BD+DC=9+5=,14则 Sa ab= >BC?AD=8 4当 ABC为钝角三角形时,如图2所示,-.ADL BC, ./ADB=90 ,在 RQABDt, AB=15 AD=12根据勾股定理得:BD= 1 =9,在ADCt, AC=13 AD=12根据勾股定理得:DC”一 : =5,BC=BD DC=9- 5=4,则 Saab=:BC?AD=24综上
20、, ABC的面积为24或84.三、解答题(共8题,共72分)17. (8分)计算(1) 4 2十.二:-五【解答】解:(1)原式=4照+3耳现反=3 二原式=;一空52218. (8 分)先化简,再求值-衿要一-其中 x=/3+/2, y=/3.x -y 良 y【解答】解:原式=,(飞户、乂工 ("V)a-v) yr=江X上工+y x-y_ 封 x+7当 x=yi+/, y=Jl -/2 xy=1 , x+y=2j3原式=-,19. (8分)如图,在?ABCm,E、F分别是AB DC边上的点,且 AE=CF(1)求证 AD图ACBF(2)请你添加一个条件,使四边形 DEBF1矩形(不
21、用证明).【解答】证明:(1)二.四边形ABCD1平行四边形, .AD=CB / A=/ C,在ADEffl ACBF 中,"AD=CBZA=ZC,lAE=CP . .AD陷ACBI3(SAJ5 .(2)添加/ DEB=90 ,理由如下: 四边形ABCD1平行四边形, .AB=CD AB/ CD.AE=CF .BE=DF四边形DEBF1平行四边形,vZ DEB=90 ,四边形DEBF1矩形.20. (8分)如图在10X 10的正方形网格中,4ABC的顶点在边长为1的小正方形的顶 百上 八、一L-(1)计算AG AB, BC的长度,并判定 ABC的形状;(2)若在网格所在的坐标平面内的
22、点 A, C的坐标分别为(0, 0), ( - 1, 1).请你在 图中找出点D,使以A、B、G D四个点为顶点的四边形是平行四边形,直接写出满足 条件的D点的坐标.【解答】解:(1) :小正方形的边长为1,AC=/124-12=/2, BC=32”2=3/, AB=22 + 42=2/5,.aC+bC=aB,.ABC直角三角形;(2);A, C的坐标分别为(0, 0), (- 1, 1),.二点C为坐标原点,如图,分别过A作BC的平行线,过B作AC的平行,线,过C作AB的平行线,满足条件的点D的坐标为(3, 3)或(1, 5)或(-3, -3).21. (8分)(1)以a, b为直角边,c为
23、斜边作两个全等的RtABE与RtzXFCDft成如 图1所示的图形,使B, E, F, C四点在一条直线上(此时E, F重合),可知4AB昭 FCD AE! DF,请你证明:a2+b2=c2;(2)在(1)中,固定 FCD再将 ABE沿着BC平移到如图2的位置(此时B, F重 合),请你重新证明:a2+b2=c2.【解答】(1)证明:连接AD,如图1所示:则四边形ABCD1直角梯形,;四边形 ABCD勺面积* (a+b) (a+b) =7 (a+b) 2, v四边形ABCD勺面积=zABE的面积+ZXFCD勺面积+4ADE的面积,即一(a+b) 2=7-abx2-c2,化简得:(a+b) 2=
24、2ab+c2,a2+b2=c2;(2)证明:连接AD DE,如图2所示:则四边形ABCD勺面积二四边形ABED勺面积+ DCE勺面积,即 (a+b)1x a= ca b)化简得:ab+s2=c2+ab- b2,a2+b2=c2.22. (10分)定义:如图1,点M, N把线段AB分割成AM MNff口 BN,若以AM MN BN 为边的三角形是一个直角三角形,则称点 M N是线段AB的勾股分割点.(1)已知点M N是线段AB的勾股分割点,若 AM=3 MN=5求BN的长;(2)如图2,在RtABC中,AC=BC点M N在斜边AB上,/ MCN=45,求证:点 M N是线段AB的勾股分割点.【解
25、答】(1)解:当MNR长时,BN=mM-AM4;当BN最长时,BN疝标得丸房;(2)证明:如图,过点 A作AD±AB,且AD=BN. AD=BN / DAC=B=45 , AC=BC .ADC ABNC .CD=CN / ACD= BCNvZ MCN=45 ,丁 / DCA廿 ACM= ACM+ BCN=45 ./MCD= BCM. .MD窿 AMNC .MD=MN在 Rt4MD9, AEJ+AMkDM, .bN+aM=mN,点M N是线段AB的勾股分割点.23. (10分)如图,在菱形ABCLfr, F为边BC的中点,DF与对角线AC交于点M,过M作 Ma CDT点 E, / BACW CDF(1)求证:BC=2CE(2)求证:AM=DF+ME【解答】证明:(1)二.四边形ABC师菱形, .AB/ CD 且 BC=CD ./BACW ACD 且 / BACN CDF ./ACDW CDF.CM=DM. MEL CD .CE=DEBC=CD=2C E(2)如图,分别延长 AB, DF交于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024城市基础设施建设项目特许经营权协议
- 2024年幼儿园教师岗位聘任协议书模板
- 2024专业建设工程项目设计合同范本专业版
- 2024家庭保姆雇佣合同样本
- 2024年先进制造业生产线自动化改造合同
- 2024年度家电行业C型钢部件加工合同
- 2024年废纸回收海运出口协议
- 2024年商场清洁服务合同
- 2024年建筑工程设计与施工一体化合同
- 2024年度智能硬件设备采购与安装合同
- 如何有效应对学习中的困难和挑战
- 医院感染管理培训课件消毒剂的选择与使用
- 平台分销返佣合作协议
- 中国城市行政代码
- 低纤维蛋白原血症的护理查房
- 数学4教材介绍
- 全国大学生职业生涯规划大赛
- 肩关节镜术的健康宣教
- 关于学校安全保卫工作存在的问题及对策
- 2024年广西铝业集团有限公司招聘笔试参考题库附带答案详解
- 2024年西藏开发投资集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论