下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§1.3.2函数的极值与导数(2课时)教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.教学过程:一创设情景观察图3.3-8,我们发现,时,高台跳水运动员距水面高度最大那么,函数在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大附近函数的图像,如图3.3-9可以看出;在,当时,函数单调递增,;当时,函数单调递减,;这就说明,在附近,函数值先增(,)后
2、减(,)这样,当在的附近从小到大经过时,先正后负,且连续变化,于是有对于一般的函数,是否也有这样的性质呢?附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号二新课讲授 1问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度随时间的增加而增加
3、,即是增函数相应地,(2) 从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数相应地,2函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系如图3.3-3,导数表示函数在点处的切线的斜率在处,切线是“左下右上”式的,这时,函数在附近单调递增;在处,切线是“左上右下”式的,这时,函数在附近单调递减结论:函数的单调性与导数的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减说明:(1)特别的,如果,那么函数在这个区间内是常函数3求解函数单调区间的步骤:(1)确定函数的定义域;(2)求导数;(3)解不等式,解集在定义域内的
4、部分为增区间;(4)解不等式,解集在定义域内的部分为减区间三典例分析例1已知导函数的下列信息:当时,;当,或时,;当,或时,试画出函数图像的大致形状解:当时,可知在此区间内单调递增;当,或时,;可知在此区间内单调递减;当,或时,这两点比较特殊,我们把它称为“临界点”综上,函数图像的大致形状如图3.3-4所示例2判断下列函数的单调性,并求出单调区间(1); (2)(3); (4)解:(1)因为,所以, 因此,在R上单调递增,如图3.3-5(1)所示(2)因为,所以, 当,即时,函数单调递增;当,即时,函数单调递减;函数的图像如图3.3-5(2)所示(3) 因为,所以, 因此,函数在单调递减,如图
5、3.3-5(3)所示(4) 因为,所以 当,即 时,函数 ;当,即 时,函数 ;函数的图像如图3.3-5(4)所示注:(3)、(4)生练例3 如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快反映在图像上,(A)符合上述变化情况同理可知其它三种容器的情况解:思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢结合图像,你能从导数的角度解释变化快慢的情况吗? 一般的,如果一个函数
6、在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些如图3.3-7所示,函数在或内的图像“陡峭”,在或内的图像“平缓”例4 求证:函数在区间内是减函数证明:因为当即时,所以函数在区间内是减函数说明:证明可导函数在内的单调性步骤:(1)求导函数;(2)判断在内的符号;(3)做出结论:为增函数,为减函数例5 已知函数 在区间上是增函数,求实数的取值范围解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解四课堂练习1求下列函数的单调区间1.f(x)=2x36x2+7 2.f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工制作合同范例
- 合作光伏合同范例
- 工厂采购合同范例范例
- 应诉律师合同模板
- 艺术学:突破与创新
- 公司间 借款合同模板
- 《变量方法选择》课件
- 单位学校餐具采购合同范例
- 店铺租借合同范例
- fidic工程合同范例
- 急腹症诊断与鉴别诊断课件
- 2022年四川天府银行校园招聘试题题库及答案解析
- 脑梗死病人护理查房ppt
- 新外研版八年级下册英语 Module 6 Unit 1 教案(教学设计)
- 学校体育学(第三版)ppt全套教学课件
- 公共管理硕士(MPA)在读证明
- Q-FT B039-2006汽车产品油漆涂层技术条件
- 留守儿童谈心记录留守儿童谈心记录
- GB-T 9251-2022 气瓶水压试验方法(高清版)
- 美术领域知识讲座
- 边坡监测合同(与甲方)
评论
0/150
提交评论