STATA指南第六讲_第1页
STATA指南第六讲_第2页
STATA指南第六讲_第3页
STATA指南第六讲_第4页
STATA指南第六讲_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、线性相关和回归赵耐青在实际研究中,经常要考察两个指标之间的关系,即:相关性。现以体重与身高的关系为例,分析两个变量之间的相关性。要求身高和体重呈双正态分布,既:在身高和体重平均数的附近的频数较多,远离身高和体重平均数的频数较少。样本相关系数计算公式(称为Pearson相关系数):(1)1. 考察随机模拟相关的情况。显示两个变量相关的散点图程序simur.ado(本教材配套程序,使用见前言)。命令为simur 样本量 总体相关系数 如显示样本量为100,r=0的散点图本例命令为simur 100 0如显示样本量为200,r=0.8的散点图本例命令为simur 200 0.8如显示样本量为200,

2、r=0.99的散点图本例命令为simur 200 0.99如显示样本量为200,r=-0.99的散点图本例命令为simur 200 -0.99例1. 测得某地15名正常成年男子的身高x(cm)、体重y(kg)如试计算x和y之间的相关系数r并检验H0:r0 vs H1: r0。a=0.05数据格式为XY171.058.0176.069.0175.074.0172.068.0170.064.0173.068.5168.056.0172.054.0170.062.0172.063.0173.067.0168.060.0171.068.0172.076.0173.065.0Stata命令 pwcorr

3、 变量1 变量2 变量m,sig本例命令 pwcorr x y,sigpwcorr x y,sig | x y-+- x | 1.0000 | | y | 0.5994 1.0000 | 0.0182 |Pearson相关系数=0.5994,P值=0.0182 |t| = 0.0080stata计算结果与手算的结果一致。结论为身高与体重呈正相关,并且有统计学意义。直线回归例2 为了研究3岁至8岁男孩身高与年龄的规律,在某地区在3岁至8岁男孩中随机抽样,共分6个年龄层抽样:3岁,4岁,8岁,每个层抽10个男孩,共抽60个男孩。资料如下:60个男孩的身高资料如下年龄3岁4岁5岁6岁7岁8岁身高92

4、.596.5106.0115.5125.5121.597.0101.0104.0115.5117.5128.596.0105.5107.0111.5118.0124.096.5102.0109.5110.0117.0125.597.0105.0111.0114.5122.0122.592.099.5107.5112.5119.0123.596.5102.0107.0116.5119.0120.591.0100.0111.5110.0125.5123.096.0106.5103.0114.5120.5124.099.0100.0109.0110.0122.0126.5平均身高95.4101.81

5、07.6113.1120.6124.0由于男孩的身高与年龄有关系,不同的年龄组的平均身高是不同的,由平均身高与年龄作图可以发现:年龄与平均身高的点在一条直线附近。考虑到样本均数存在抽样误差,故有理由认为身高的总体均数与年龄的关系可能是一条直线关系,其中y表示身高,x表示年龄。由于身高的总体均数与年龄有关,所以更正确地标记应为表示在固定年龄情况下的身高总体均数。上述公式称为直线回归方程。其中b为回归系数(regression coefficient),或称为斜率(slope);a称为常数项(constant),或称为截距(intercept)。回归系数b表示x变化一个单位y平均变化b个单位。当x

6、和y都是随机的,x、y间呈正相关时b0,x、y间呈负相关时b F = 0.0000 Residual | 447.467619 58 7.71495895 R-squared = 0.9306-+- Adj R-squared = 0.9294 Total | 6445.18333 59 109.240395 Root MSE = 2.7776- y | Coef. Std. Err. t P|t| 95% Conf. Interval-+- x | 5.854286 .2099654 27.88 0.000 5.433994 6.274577 _cons | 78.18476 1.20920

7、2 64.66 0.000 75.76428 80.60524-得到回归系数b=5.854286,常数项a=78.18746,回归系数的检验统计量tb=27.88,P值0.0001,可以认为Y与X呈直线回归关系。来源平方和SS自由度df均方MSFP值回归5997.7157115997.71571777.41chi2-+- e | 0.459 0.441 1.18 0.5534P值=0.55340.05,可以认为残差呈正态分布。所建立的回归方程是否有意义,仅凭借假设检验的结论或R2的大小还不能充分说明问题。残差的大小直接反应回归方程的优劣,经常采用图示的方法,以e做纵轴,为横轴作图来考察残差的变化,如果残差比较均匀地散布在e=0的周围,没有明显的散布趋势和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论