




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、iSIGHT720863/CIMSEngineousiSIGHTISIGHTISIGHT1.3.4.5.iSIGHTiSIGHTiSIGHT1SIGHTISIGHT1SIGHT2 41SIGHT2 51SIGHT1SIGHT#1SIGHT1SIGHT1SIGHT21.CAD CAEExcel ISIGHT1SIGHTFortran C+ VisualBasic Unix1SIGHT3ISIGHTISIGHT4541SIGHT1SIGHT name-valueCORBAISIGHT(FDC)MDOL1SIGHTInput fTSimulation-basedProcessesOutputklEx
2、plore EnaineISIGHTISIGHT1S1GHT1SIGHT1SIGHTIPC InterprocessCommunicationiSIGHTCuMcmTd7Case1SIGHT1SIGHT1SIGHTMSC/NASTRANIfWhileTel#ExcelExcelMD0L1SIGHTExcel 1SIGHT1SIGHT Visual BasicISIGHT1SIGHT1SIGHTEPCCORBA1SIGHTKIDOL720863/Cl 胎WDONational Aeronautices & Space Administration NASA Langley Multidi
3、sciphnaiy Optimization Branch NfDOB Multidisciplinaiy Design Optimization 1 Multidisciplinary Design Optimization (MDO)ls a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena.MX)MDOHjI t i Di sci pl i nary
4、Feasi bl e血FAl I -1 n- OneA-l-0I ndi vi dualDi sci pl ne Feasi bl eI DFGSEConcur r ent SubSpace Opt i ni zat i oncssoCol I abor at i veOpt i rri zat i on CO BL I SS Bi - Level I nt egrat ed Syst emSynt hesi sBL I SS/ RSM9#1.M)F All-In-One#LOOmil t i di sci pl i nary anal ysi s血AXoXoM)A#XoXd U Xd#g(X
5、°0(XJ)WOXoLDA11IDFIDFI DF9jz9jzIDFIDFF( XD. U( X)X=( XD, X )g(XD,u(x) oc(X) = Xm - m = QXD9jz9jz3.cssoCSSOMX)csso4.coJj = C; <0.0001 j -1,2?2 IDF血ASobi eski(CO)(CO)CSSOCSSOGSECSSORenaud Bat i 11CSSOKr oo h0MX)Fxiyj9jzXsj,Xj ,J s<=|X?.-Z; L +匕z;T,zsZfcococo5 BL I SS Bi - Level I nt egrated
6、 Syst em Synt hesi sBLISSBLISSt he opt i num sensi t i vi t y anal ysi s dataBLISSI SI GHTBLISSBLISSA-1-0ZBLISS1./Y2.sensi t i vi t y anal ysi s, syst emopt i rri zat i on.BLI SSsyst em anal ysi sI ocal di sci pl i nary opt i rri zat i ons6 BLISSRSMBLISSbl ack box/di sci pl i naryBLI SS RSMBBOPTBLIS
7、S20BLISSBLI SS/ RS1BLI SS/ RS2BLI SS/ RS1BLI SS/ RS2BL I SS/ RS2syst em anal ysi s SABl ack- Boxsensi t i vi t y anal ysi s BBSASyst emsensi t i vi t y anal ysi s SSABl ack- Box opt i ni zat i on BBOPTsyst emopt i rri zat i onSOPT(Opt i rri zat i on)720863/CMi SIGHTi SI GHTwm士 o加(LB_gj(X)<0 SF;SF
8、LB iSlGHTlnputParameter / UBSFSSFW1.01.0i SGHTi SIGHTh(x)± DeltaForEqualityConstra int Violation0.00001i SIMiSIOITXi SI O1Tg(x)xX1E15i SIGHTI SI加APIi SIGHTi SIGHTNiuncncal Optimization Tecluiiques Expl ora toiy TecluiiquesExpert System Tecluiiques ADS (Automated Design Synthesis)-bascd Tecluiiq
9、ues Exterior Penalty Modified Metliod of Feasible Directions ( Sequential Linear Progianuiiing)(Generalized Reduced Gradient LSGRG2)Hooke- Jeeves( Hooke-Jeeves Direct Search Metliod)一 CONMIN Method of Feasible Directions 一 CONMIN- MOST Mixed Integer Optimization - MOST一 DONLP Sequential Quadiatic Pr
10、ogramming- DONLP一 NLPQL Sequential Quadratic Prograimiiiiig 一 NLPQL Successive Approximation MetliodDirect metliods ( Generalized Reduced Gradient LSGRG2) - CONMIN Metliod of Feasible Directions - CONMIN 一 MOST Mixed Integer Optimization 一 MOST Modified Metliod ofFcasiblc Directions ADS ( Sequential
11、 Linear Progranmiing- ADS) 一 DONLP Sequential Quadratic Prograiimniig 一 DONLP 一 NLPQL Sequential Quadratic Prograiimiiiig 一 NLPQL Successive Approximation Metliod2Penalty metliods(!)=尸(丄)+ P(x)G)# Exterior Penalty Hooke- Jeeves(Hooke-Jeeves Diicct Search Mctliod)2i SIGHT Genetic Algoiitlun Genetic A
12、lgontlun witli Bulk Evaluation Simulated Aimealing3i SIGHTDirectedHeuristic Search DHS(Exterior Penalty)MLP(x) = 7p m"(9j(5),0)2+7p 工j = 1Jc= I(Modified Method of Feasi bl e Di recti ons)1. a = 0.x = x°尸(卫 gj j = i,2,.,a/jVF(x) Vgj(x) jeJ£a *VF(xql)xSqV(x)xr <O;yeJSq xSq <1PF0)7
13、 一卩Vg, 0) x Y +50;jwJ$ V VIJ60y =007 >0CT<(x)<CTM/N g&)3.4.5.6.7.8.9.123Sj(x)>CTM/N Sj(x)ox(6U Ee6Od ss 二-e 二 uenbs)cosUJf-l*勺 QA+(J) d 川9G 划二。卫A + (%|订川)42LSGRG2尸(X)2(LSGRG2)hk(X) = 0k=MXLi< Xi < XUii = 1,"Xj + n >0j = 5nmmgj(X) + X/ + /? = 0 j = l.mn+m17LSGRG2GRG#5 Ho
14、oke-JeevesHooke-JeevesfO(Hooke-Jeeves Di rect Search ftfethod)fOr ho,fOHooke Jeevesrho1 g = 0,x = x°2 q = q +13.竺/(M)f(M)6.-CONM NCOWNDesign: = Design + A* SearchDirectioniiA# CONMN19 CONMN1.q = 0.x = x°# CONMN# CONMNq = q+# CONMN# CONMN吃)gj(x)j = 1,2,、M# CONMN# CONMN4.5.VF(x)S°7.a*8.
15、9.# CONMN-CONhflNVgy(x)x50;jeJSqxSq <1-CONhllN阻也5丫+ 60SO;j"SqxSq <160y =0®. >0CT <y(x) < CTMIN gy(x)#gj©>CTMlN gj MOSTMOST Multifunctional OptumzationSystem Tool MOSTbranch-and-bound1SIGHT1SIGHT-NLPQL-DONLPSQPXXXv EN N+l1SIGHTSQP8. DOhLPDONLPK-TDONLPLagr ange Hessi a
16、n Pant oj a- lAynear ni j i -1 ype-DONLP(DO NonLinear Programming) Kuhn-Tuckei* DONLPLagrangian HessianPantoja-Maynear ni j i t ypeDONLPX= (XpX-,a:n) 弘)g/(I)= o;丿=1,gf(x)>Oj = me+ly.9mE 2 2“Vhk (xk)T x S + hk (xk) = 0; R = 1,2,.,厶(凶 Tx§+g 赵(xk) = QMPJ:J(E1,2,.,M 沁)509. M.PQLNLPQL(SCP) NLPQL#
17、Hessi anBFGS#NLPQLx=(.v1,x2,.xN) 化)幻= 0;_/ = l,.,九Xt X<XUSQP#SQPSQP21#L(x. u)SQPB,Hessian-dTBkd + Vf(xky d deR" 2Vg j g r d + g j (E ) = 0 J = 1,.,叫,Vg j (耳 r d + g / g) n o j = i,.叫,xt - xk <d <xu 一 忑#NLPQLdkSchittkovzskixk = xk+akdkB,SQPBFGS血+i -忑 VL(xi+1,ha ) - VE(无,叭)NLPQLB#SQPKh-科
18、|M儿卜上-巧7kSQPn+mn+mKulin-TuckerHessianBk(Successi ve Appr oxi mat i on Kfet hod)10.#M Ber kal aar and J. J. Di r ksLP- SOLVE1SIGHTdnvejpsolve cmaxminv, s,=,n, >< < > >int < var > +尸hk (x) = 0;k = 1.2,.,Lxx,i = ly.,n g.hk环叫-士罟叫+ £薯z1=1 1=1003 1SIGHT100101100100231002510010030
19、(0)Hol I and 6015521552110000100021OOOI1OO1111OO11OI11OOO11O1OOOI110001100110110011110#1000100111101000100101101g op g2P93P9P9 19 9 1422(Genetic Algolitlun with Bulk Evaluation)i SI HGTi SIGHTBui kEval uat i oni SIGHT LDOLiSI GdT3 (SA)c(s)STTT恥t r叩ol i sss'c(s')<qs)Te(c(s )-c(s)T(hferkov)
20、i SIGHT问 ropol i sDHSi SIGHTDHSDHSDHSDHS27DHSDHSDHSDHSDHSX1X2X3XnnDHS180DHS Conpet eDHS Sequent i alSi nul t aneousSeparabl e and Si mul t aneousl nsepar abl eDHSRandom29LM)FModified Method of Feasible Directions - ADS Method of Feasible1关冨性崎也相关尺熾ABcDABcDR耳Tl.lX方同*+I¥f1t “Scq弘lR inssSIScqs'
21、-'-R:in1+Itf+f+1H.D4i rDHSDHSDHSDHS仁DHS2.DHS3.Gi vebackG vebackG vebackDHSGi veback#LM)FModified Method of Feasible Directions - ADS Method of Feasible#LM)FModified Method of Feasible Directions - ADS Method of FeasibleMMFDMMFDSLPSQPSQPHJSAMDHSGAMOSTLSGRG2Modified Method of Feasible Directions -
22、 ADS Method of Feasible Directions 一 CONLUN Sequential Linear Programming ADS Sequential Quadratic Programming -DONLP Sequential Quadratic Programming -NLPQL Hooke-Jeeves Direct Search Method Successive Approximation Method Directed Heuristic Search (DHS) Genetic Algorithm14ixed Integer Optimizauon
23、一 MOST Generalized Reduced Gradient LSGRG2Directions 一 CONMINSQPSequential Quadratic Programming 一 DONLPSequential Quadratic Programming 一 NLPQLGA Genetic Algorithm Genet i CAl gor i t hm wi t h Bui k Eval uat i on2Pen. 煦h.hWFSLPSQPHJSAMDHSGASi mAnnl M3STLSGRG2XXXXXXXXXXXXXXXXXXXXXXX20XXXXXX1000XXXX
24、XXXXXXXxXXXNLPQL X"3hWFSQPHJSAMDHSSi mAnnl.MOSTLSGRG2XXXXXX*XXXXXXXXKuhn-TuckerXXXXx-XXXXXXXXXXXXXXXXXX*Modified Method of Feasible Directions 一 ADSX*iSIGHTiSIGHT Coarse-1 o- Fi ne Search Est abl i sh Feasi bi I i t y, Then Search Feasi bl eRegi on Expl oi t at i on and Expl or at i on Co叩I err
25、ent ary Landscape Assu叩t i ons Procedural For mil at i on Rul e- Dr i veniSIGHTISIGHT1 Coarse-1o-Fi ne SearchSQP1SCP2 SQP1SQP22 Est abl i sh Feasi bi I i tyf Then Search Feasi bl e Regi oni SI GHT3 Expl oi t at i on and Expl or at i on4 Co叩I errentary Landscape Assurrpti ons5 Procedural For mil at i
26、 oniSIGHT6 Rul e- Dri veni SI GHT31Approximation720863/CIMSL. A. Schrrl tAppr oxi mat i on Concepts f or Ef f i ci ent St r uct ural Synthesis, NASA ContractorReport 2552, NASA Langl ey5 Wrch 1976(DOE)i SIGHTRSMRSMRSM尸(X) = 5 +工切兀NNF(X) = q + 工 b£ + 工 ctix; + 工 CjMZ=11=1v(f< /)N33RSMi SIGHT#
27、(N + l)木(N + 2)/2N + l,N#RSM#35R2R2i SIOfTR2R2 1.00NN+1R2TSA1234i SIGHTMDOL Gr adi enti SIGHTN+1i SIGHT尸(X) = F(X°) +工 g,(X°)(*-X)/=1X。£MTFF2F(x)=r(x0)+f gj(x°)a -x*)4r=lX3F(X) = F(X0) + E g,(X°)(f -站)0(f,对)1 ifxf.(Xo)>O0X,站)Xq4% = < r匸(X) = F(X°) + 丄士(x;)-匕(X J(x
28、V - (x;) i«iX?尸(XJ"(XJ = O537#N (J古人1N*i/!p.£(亦(XJ/%)_gj(XJ = OF(X1)-F(X1) = OEuler CFDNavi er St okes CFDNavi er - St okes CFDEul er CFDi SIGHTonoffObj ect i veAndPenal t yRSMTSA VCMTrr _ F _ F? _ Actual change in Obj ectiveAndPenalty -A2 Approximate change in Obj ectiveAndPenaltyF1
29、F2A1 A2 TRR1.0 TRR0.0 TRRTRR TRR TRR TRR1234567TRR#103RSM39u7 1720863/CIMS#u7 1#u7 11SIGHTMont e Car I oTaguchi sSi x Si gmaLbnt e Carl o#u7 1#u7 1#u7 1#u7 1Monte CarloM)nt e Car I oi SIGHT血 nt e CarloMont e Carlo110,000(1,000)345/63527Saliby, 1990( )vari ance reduct i on t echni ques1SIGHTLatinFigu
30、re 7-/. Munte < urlo Sampiinif TeehHiques41u7 1#u7 1Simple Random SamplingDescriptive Sampling#u7 1#u7 11SIGHT Monte CarloMonte CarloTaguchis X (Z)y yTaguchi#7 2-2. Prifdriut AnyftH Rcjwnh Mean it nd I aritiuce Kstiinatio/iMo«fi Anay1234afswO-IW3yl3yz3ywy« a w a y V y V fr41 y y y yn n-
31、 n.x1, x2, x3?z1,z2.z3,*12211y>2yiyi7Taguchi72SI Nyi7 2L»iS/Nnoni nal i sbestI oweri s betterhi gheris bett erS/N7 143Table 7-/. 5ZV RufivRespond ly|M-S/N RmioNofniiial h hcvt:J4V y V 81° %;< eLvuct if better0 V y V 8loginI n .-I 丿HLghcr is bettenf 1 ft 0<y <oo-I0log1(1A告片/i SI
32、GHTNominal is bestS/N-g吩辛i#-IGIoy.丄f厂加小I1"仃Lower is betterHigher is betterHigher is betterLower is better max|y| Nominal is bestTaguchi100%9.910.r9.9”10JM100%i(rTaguchiFignrti 7-J. Taguchi % Lw F u fictionpared io Coitventiotuil OitalityAementIMLu *l IIM(onv cnlional(No I oss Rm45#L(y)yTalyorL(
33、y)=k(y-T)2Ty-t1.0Response lypcLoss FunctionNtHiiinal is best:-£心寸 8 V < «JLower is Feder:n IUH 8Higher is better:丄办丄以幺y:0 S v S «S/N"Lower i s bett er”MH gher i s bet t er”0 yi SIGHTResponse lx pe1 -Oss FunctionLcnvii i、belter;1亍如后II8 < V < OOHigher is butter:丄f ”用卜18 &l
34、t; V 00i SI GHTObjective (0lll|MHWntRvsjHime 1)卩 tPvrfbrnuinctCharacteristicYlfamj 4S- N RitioY2(any)Loss ruiKliuiiY3Higher is BetterMcuii and XnfuinccY4Lower is rUttcrMean and VnrijinxrcY5Nottiinal is Bc、【Mean Only S/ Nyi + Ly2*Y3 +2Y3+Y4+<+(Y5* TY5) 247Taguchi1.0Six Sigma#iSIGHTSix SigmaTaguchi
35、Six SigmaiSIGHTSix Sigma#si gma0.683#F0n91ut Distr/hirtuHi for Six Siwa-60 -5ct -4a *3cr -2n -1n p *ln +2n +.kF *4a +5ct +octsi gmaTuble 7-2. Argrwrf Z.rr/ .4*hifHi/ww n/ic/ Defect Per MillionSima Le> vlPercent VariationDew per millioiiDefects per millionbh«rl lerml(lonu (ertn)±ln6H263
36、m)6Q7.7(IO£954645,400308,733亠3(7M.732.70066.8(13±4<t4 9937636.2<M)99.QQQO430.57233i为如恥i朋0.0023.47 433399.73%36Harry, 1997si gma叩 m7 232700/ ppm100. 1010.051.5si gmasi gma7 2si gma1.5366?8036Si x Si gma0.0027 2si gma3.466DFSSDesign For Six SigmaHarry,1998DFSS6Si x Si gma (6 )7 57 5a7 4336100%17 5bVxEninernn: Design fttr Srx-Sifintaa 3g Designb» 6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025飞行培训及雇佣意向合同书样本
- 2025精算师考点关于投资连结保险合同形成资产的解析与探究
- 2025房屋租赁合同协议范本2
- 苏州某污水管道工程顶管施工组织设计
- 二手房买卖合同书公证操作流程简述
- 二零二五版劳动合同书管理制7
- 二零二五版租房子合同书模板
- 二零二五版分红协议书合同书屋
- 教师岗位员工劳动合同书二零二五年
- 大学生职业规划大赛《市场营销专业》生涯发展展示
- 2025-2030年中国小麦加工产业运行动态及发展可行性分析报告
- 乾坤未定皆有可能-2025届高三百日誓师班会课件
- 台达DELTA变频器VFD-EL系列使用说明书和手册(完整中文版)VFD007EL23A
- 2025年山西汾西矿业集团公司招聘笔试参考题库含答案解析
- 2024年度英语课件容貌焦虑
- 神经外科质量与安全管理工作计划
- 城市违建拆除施工方案
- 复色激光光谱分析研究
- 农药代销协议书模板
- 《电力中长期交易合同示范文本(2022年修订版)》
- 小学班会 世界知识产权日知识产权宣传周主题班会 课件
评论
0/150
提交评论