最新恒成立能成立问题总结(详细)_第1页
最新恒成立能成立问题总结(详细)_第2页
最新恒成立能成立问题总结(详细)_第3页
最新恒成立能成立问题总结(详细)_第4页
最新恒成立能成立问题总结(详细)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档精品文档恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。 这类问题在各类考试以及高考中都屡见不鲜。感觉题型变化无常,没有一个固定的思想 方法去处理,一直困扰着学生,感到不知如何下手。在此为了更好的准确地把握快速解 决这类问题,本文通过举例说明这类问题的一些常规处理。一、函数法(一)构造一次函数利用一次函数的图象或单调性来解决对于一次函数 f(x) kx b(k 0), x m, n有:k 05 k 0或f(m) 0 f (n) 0f(m) 0f(n) 02mxm对满足 2 mf (x) 0包成立f (x) 0包成立例1若不

2、等式2x 1f (m) 0f(n) 0;2的所有m都成立,求x的范围。2解析:将不等式化为:m(x 1) (2x 1) 0 ,构造一次型函数:g(m) (x2 1)m (2x 1)原命题等价于对满足2 m 2的m,使g(m) 0恒成立。2由函数图象是一条线段,知应g( )(x ) ( x )g(2) 02( x2 1) (2x 1) 0曰 1713, 1、. 7 1.3、斛得x ,所以x的范围是x (,)。2222小结:解题的关键是将看来是解关于x的不等式问题转化为以m为变量,x为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。练习:(1)若不等式ax 1 0对x 1,2恒成立,求

3、实数a的取值范围。(2)对于0 p 4的一切实数,不等式x2 px 4x p 3恒成立,求x的取值范围。(答案:|犬3或工亡-1)(二)构造二次函数利用二次函数的图像与性质及二次方程根的分布来解决。对于二次函数f(x)2ax bx c 0(a 0)有:(1) f (x) 0在x R上恒成立a 0 且0;(2) f (x) 0在xR上恒成立(3)当a 0时,若f (x) 0在,上恒成立b2a 或f ( )0bb2a 或 2a0f ( )0若f(x) 0在,上恒成立f( ) 0f( ) 0(4)当a 0时,若f(x) 0在,上恒成立f( ) 0f( ) 0若f(x) 0在,上恒成立2a2a2af(

4、)例2若关于x的二次不等式:ax2 (a 1)x1 0的解集为R ,求a的取值范围.解:由题意知,要使原不等式的解集为R,即对一切实数x原不等式都成立。只须a 0(a 1)2 4a(a 1) 0a 03a2 2a 1 0a的取值范围是说明:1、本题若无“二次不等式”的条件,还应考虑a 0的情况,但对本题讲a 0 时式子不恒成立。2、只有定义在 R上的恒二次不等式才能实施判别式法;否则,易造成失解。练习:1、已知函数y v'mx2 6mx m 8的定义域为 R,求实数m的取值范围。(答案0 m 1)2 、已知函数f(x) x2 2kx 2在(1, Hf(x) k恒成立,求实数k的取值范围

5、。(答案3 k 1)提示:构造一个新函数F(x) f(x) k是解题的关 键,再利用二次函数的图象性质进行分类讨论,使问题得到圆满解决。(三)、利用函数的最值- 分离参数法或值域法若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边即分离参变量,则可将恒成立问题转化成函数的最值问题求解。注意参数的端点值能否取到需检验。类型一 :" a f (x) ”型(恒成立)(1) x D,f(x) m 恒成立f (X)min m;(2) x D,f(x)m恒成立f (X)max ;二、(能成立、有解)(1) x D

6、, f (x) m 能成立m f(x)在D内有解f (x)maxm ;(2) x D, f (x) m 能成立m f(x)在D内有解m f ( x)min ;三、(恰成立)(1)不等式f xA在区间D上恰成立不等式f x(2)不等式f xB在区间D上恰成立不等式f xB的解集为D.四、(方程有解)方程m f (x)在某个区间上有解,只需求出f (x)在区间上的值域A使m A。一、.1 2x a4x_例3:设f(x) lg,其中a R,如果x (.1)时,f(x)恒有意义,求a3的取值范围。解:如果x (.1)时,f(x)恒有意义不等式1 2x a4x 0对x (,1)恒成立 a4xx 2x(2

7、2 ), x (.1)恒成立。令t 2 x, g(t)(t t2),又x (,则 t(;)ag(t) XnJ,213g(t)maxg(二)二24例4 :若关于x的不等式x2解:设 f(x) x2 ax1)恒成立,又Qg(t)在t 一,)上为减函数, 23a -4ax a 3的解集不是空集,则实数 a的取值范围。a .则关于x的不等式x2 ax a 3的解集不是空集f(x)3在R上能成立f(x)min 3,即 f(X)min4a a243,解得a6或a 2例5不等式kx2 k 20有解,求k的取值范围。222解:不等式kx2 k 2 0有解 k(x2 1) 2能成立 k 能成立x 1k(2)ma

8、x2,所以 k (,2)。x 1例6 (2008年上海)已知函数 f(x) =2x21x不等式2tf(2t)+m f( t) > 0对于tC1, 2恒成立,求实数m的取值范围解:本题可通过变量分离来解决.1.1当 t 1,2时,2t (2予)m(2t -r) 0'22t2t'2t4t2t2t即 m(21)(21), 21 0, . m (21)_ 2t-t 1,2, . (21) 17, 5故m的取值范围是5,)例7 (1990年全国)设f (x)1x lg 2x 3x (n1)x,其中a为实数,n,1时有意义,求a的取值范围.任意给定的自然数,且 n 2 ,如果f (x

9、)当x (解:本题即为对于x (, 1,有1x 2x(n 1)x nxa 0恒成立.这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a的范围,可先将a1 V 2 vn 1 V分离出来,得a (一)x (-)x( )x(n 2),对于x (, 1恒成立.n nn一 ,一一1 x构造函数g(x) (-)x n(,1上的值域,,2,x ,n 1.x.,、(-)(),则问题转化为求函数g(x)在nn,k x由于函数 u(x) (一)x(k 1,2, n 1)在n精品文档x (, 1上是单调增函数,1则g(x)在(,1上为单调增函数.于是有g(x)的最大值为g(1)-(n 1),21从而可得a

10、(n 1). 2如何在区间D上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x)的最值.类型二:“ f x g(x) ” 型(1)x D, f (x)g(x)恒成立f (x)的图象恒在g(x)的图象的上方f (x) min g(x)max(x D)恒成立h(x) f ( x) g(x) 0 恒成立。工例 8 已知 f(x)= 71g(x+1) , g(x)=lg(2x+t),若当 x 0,1时,f(x) <g( x)恒成立, 求实

11、数t的取值范围.解f(x) <g(x)在x 0,1恒成立,即而在x 0,1恒成立O&TF-2X-L在0,1上的最大值小于或等于零.令(工)=衍-上1匚一、 I 91 - 4i/x +1F3 = . 2 =.2VX4-12工 +1 x0,1, F' (x) v 0,即F(x)在0,1上单调递减,F(0)是最大值. .f(x) < F(0)=1 -t<0,即 t >1.类型三:“f x1g(x2)”型(恒成立和能成立交叉):精品文档精品文档(1)X1D, X2 E, f (X1) g(X2)成立f(Xi)min g(X2)f (Xi)ming(X2)f (X

12、i)min g(X)min ;例9已知两个函数f(X) 8x2 16x k, g(X) 2x3 5x2 4x,其中k为实数。(1)对任意x 3,3,都有f (x) g(x)成立,求k的取值范围;存在x 3,3,使f (x) g(x)成立,求k的取值范围;(3)对任意x1,x23,3,都有f(x1) g(x2),求k的取值范围。解析:(1)设 h(x) g(x) f(x) 2x3 3x2 12x k 问题转化为 x 3,3 时,h(x) 0恒成立,故 h(x)min0。令 h'(x)6X2 6x 120,得 X1或X2。由 h( 1) 7 k,h(2)20k,h( 3) k45,h(3)

13、 k 9,故 h(x)min 45k由 k 45 0 k 45。(2)据题意:存在 x 3,3,使 f (x) g(x)成立 h(x) g(x) f (x) 0 在X 3,3 有解,故 h(x)max 0,由(1)知 h(x)max k 7,于是得 k 7。(3)分析:它与(1)问虽然都是不等式恒成立问题,但却有很大的区别。对任意X1,X23,3 ,都有f (x1) g(x2)成立,不等式的左右两端函数的自变量不同,X1, X2的取值在3,3上具有任意性,因而要使原不等式恒成立的充要条件是:f (x)maxg(x)min,X 3,3,r ' /、由 g (x)八2 一八 一2一6X 1

14、0X 4 。,得 X1或X,易得 g(x)min g( 3)21,3又 f (X)8( x 1)2 8 k , x 3,3 .故 f(x)max f(3) 120 k,令 120 k 21 k 141。1 a例 10: (2010 山东)已知函数 f(x) ln x ax 1 (a R).x1.(i )当a 时,讨论f(x)的单调性; 22.1,(n)设g(x) x 2bx 4.当a 一时,若对任意 x1 (0,2),存在x21,2 ,使4f(x1) g(xz),求实数b取值范围.解析:(i)当a 0时,函数f (x)在(0,1)单调递减,(1,)单调递增;1 . 一.当a 时x1 x2, h

15、(x) 0恒成立,此时f (x) 0,函数f(x)在 2(0,)单调递减;1 _ 1当0 a 时,函数f(x)在(0,1)单调递减,(1- 1)单调递增,2 a1,(1,)单调递减. a1 (n)当a 时,f(x)在(0, 1)上是减函数,在(1, 2)上是增函数,41 所以对任思 x1 (0,2),有 f(x1) f (1)-,21.又已知存在 x21,2,使 f(x1) g(x2),所以 一 g(x2) , x21,2 4)2又 g(x) (x b)2 4 b2,x 1,2当 b 1 时,g(x)min g(1) 5 2b 0 与(X)矛盾;当 b 1,2 时,g(x)min g(1) 4

16、 b2 0 也与(X)矛盾;117当 b 2 时,g(x)min g(2) 8 4b -,b -. 28一 ,一一 17综上,实数b的取值范围是17,).8f 第=x - x -3矍 + ,= 例11已知函数3若若若 若若对任意 x1, x2C-2,2,者B有f(x 1) < g(x 2),求 c 的范围.解 因为对任意的Xi, x2e-2,2,都有f(x 1) <g(x2)成立,1- f(x)max<C g(x) min.精品文档精品文档 ,f ' (x)=x 2-2x-3 ,令 f ' (x) > 0 得 x>3 或 xv-1 ; f '

17、; (x) v 0 得-1 vx<3. f(x)在-2,-1为增函数,在-1,2为减函数. f( -1)=3 , f(2)=-6 , y- f(x) ma=3.2. . c v -24.类型四:“ f(x1)f x f(x2) ”型"sc) = 2 siuf + 马例12:已知函数75 ,若对任意xCR,都有f(x 1)Wf(x) <f(x 2)成立,则|x 1-x 2|的最小值为 .解.对任意xCR,不等式f(x 1)Wf(x) <f(x 2)恒成立, f(x 1), f(x 2)分别是f(x)的最小值和最大值.对于函数y=sinx ,取得最大值和最小值的两点之间

18、最小距离是兀,即半个周期.f(z) = 2sn<-又函数2$的周期为4, |x 1-x2|的最小值为2.类型五:32例 13 (2005 湖北)在 y=2x, y=log 2x, y=x2, y=cosx 这四个函数中,当0vx1Vx2<1 时,f(-1 +乂2); FQh)斗、(卜2)使 22恒成立的函数的个数是()A.0B.1C.2D.3精品文档精品文档f产十上2)、©)十收)的函数,解 本题实质就是考察函数的凸凹性,即满足条件 应是凸函数的性质,画草图即知 y=log双符合题意.类型六:.“肛-*2>0”型例14已知函数f(x)定义域为-1,1 , f(1)=

19、1 ,若m, nC-1,1 , m+nO时,都有,若 f(x)wt2-2at+1 对所有 xC -1,1 , a。-1,1恒成立,求实数 t 的 取值范围.解任取-1WX1VX2W1,底6 8”争¥。赛散0- f仇)由已知 町一 n >0,又 X1-X 2< 0, f(x 1)-f(X 2)<0,即f(x)在-1,1上为增函数.f(1)=1 ,. -x -1,1,恒有 f(x) <1.要使 f(x) < t 2-2at+1 对所有 xC-1,1 , aC-1,1恒成立,即要 t2-2at+1>l 恒 成立,故t2-2at >0恒成立.令 g(

20、a)=t 2-2at ,只须 g(- 1) >0 且 g(1) >0,精品文档精品文档解得t W-2或t=0或t >2.评注 形如不等式“町7a >0”或“ 列一工2 0”恒成立,实际上是函数的单调性的另一种表现形式,在解题时要注意此种类型不等式所蕴涵的重要信息.类型七:“ |f(x i) vf(x 2)| vt(t为常数)”型1_例 15 已知函数 f(x)=-x 4+2x3,则对任意 ti,t2 c -G,2(t it2)都有 |f(x i)-f(x 2)| w恒成立,当且仅当t尸, t2=时取等号.解 因为 |f(x 1)-f(x 2)1 W|f(x)maHf(x

21、)min| 恒成立,由底4sl xC -亍,2, 易求得阿项血=哈号,fQOJmin =式一彳)=一" 210. |f(x i)-f(x 2)| <2.类型八:"|f(x 1 )-f(x 2)| < |x 1-x2|”型例16已知函数f(x)=x 3+ax+b,对于xi,x 2c (0,)(x 1WX2)时总有 |f(x1)-f(x 2)| <精品文档|x i-x 2|成立,求实数a的范围.解由 f(x)=x 3+ax+b,得 f' (x)=3x 2+a,当 xC (0,£3 )时,avf' (x) v1+a.精品文档|f(x i

22、)-f(x 2)1 V|X1-X2| ,I "打)一网")卜:勺一”评注由导数的几何意义知道,函数k-251的斜率 ”一修(X 1WX 2)的取值范围,y=f(x)图像上任意两点P(xi,y 1) , Q(X2,y 2)连线就是曲线上任一点切线的斜率(如果有的话)的范|f(x i)-f(x 2)| w m|xi-x 2| 或 |f(x i)-f(x 2)| 用 m|xi-x2|(m围,利用这个结论,可以解决形如 > 0)型的不等式恒成立问题.(四)数形结合法数学家华罗庚曾说过:数数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同

23、样起着重要作用。我们知道,函数图象和不 等式有着密切的联系,对一些不能把数放在一侧的,可以利用构造对应两个函数的图 象法求解。1 ) f (x) g(x)函数f(x)图象恒在函数g(x)图象上方;2 ) f (x) g(x)函数f(x)图象恒在函数g(x)图象下上方。1例17已知a 0,a 1, f (x) x2 ax,当x ( 1,1)时,有f(x)恒成立,求实数a2的取值范围。解析:由f(x) x2 ax1,得x2 1 ax,构造出两个函数并在同一直角坐22标系中作出它们的图象,如果两个函数分别在x 1和x1处相交,则由21 一 211_x _1 x1 一2及(1)- a得到a分别等于2和

24、0.5,并作出函数y 2及y (一)222的图象,所以,要想使函数 x2间x ( 1,1)对应的图象在y1 a在区间x ( 1,1)中恒成立,只须y 2在区 221 ,x2 在区间x ( 1,1)对应图象的上面即可。当2精品文档精品文档a1时,只有a 2才能保证一一, 10 a 1时,只有a 才可以,所以21a 2,1)(1,2。例 18 设 f (x) Vx2 4x , g(x)若恒有f (x) g(x)成立,求实数a的取值范围.分析:在同一直角坐标系中作出 f(x)及g(x)的图象如图所示,f(x)的图象是半圆(x 2)24(y0)g(x)的图象是平行的直线系 4x 3y3a0。-2要使f(x) g(x)恒成立,则圆心2,0)至陋线 4x 3y 3 3a0的距离满足8 3 3a 25解得a55或a -(舍去)3练习:若对任意xR,不等式ax恒成立,求实数a的取值范围。练习:1、已知二次函数满足 f (0) 1,而且 f (x 1) f (x)2x,请解决下列问题(1)(2)(3)(4)求二次函数的解析式。f (x) f (x) f(x)2x2x2xm在区间m在区间m在区间f (x) x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论