![2012年安徽省高考数学试卷(理科)答案与解析_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/7/0bcc86a3-75f0-47e3-bcf7-f196d76309ec/0bcc86a3-75f0-47e3-bcf7-f196d76309ec1.gif)
![2012年安徽省高考数学试卷(理科)答案与解析_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/7/0bcc86a3-75f0-47e3-bcf7-f196d76309ec/0bcc86a3-75f0-47e3-bcf7-f196d76309ec2.gif)
![2012年安徽省高考数学试卷(理科)答案与解析_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/7/0bcc86a3-75f0-47e3-bcf7-f196d76309ec/0bcc86a3-75f0-47e3-bcf7-f196d76309ec3.gif)
![2012年安徽省高考数学试卷(理科)答案与解析_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-1/7/0bcc86a3-75f0-47e3-bcf7-f196d76309ec/0bcc86a3-75f0-47e3-bcf7-f196d76309ec4.gif)
![2012年安徽省高考数学试卷(理科)答案与解析_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-1/7/0bcc86a3-75f0-47e3-bcf7-f196d76309ec/0bcc86a3-75f0-47e3-bcf7-f196d76309ec5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2012年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)(2012安徽)复数数z满足(zi)(2i)=5则z=()A22iB2+2iC22iD2+2i2(5分)(2012安徽)下列函数中,不满足f(2x)=2f(x)的是()Af(x)=|x|Bf (x)=x|x|Cf(x)=x+1Df(x)=x3(5分)(2012安徽)如图所示,程序框图(算法流程图)的输出结果是()A3B4C5D84(5分)(2012安徽)公比为的等比数列an的各项都是正数,且a3a11=16,则log2a16=()A4B5C6D75
2、(5分)(2012安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A甲的成绩的平均数小于乙的成绩的平均数B甲的成绩的中位数等于乙的成绩的中位数C甲的成绩的方差小于乙的成绩的方差D甲的成绩的极差小于乙的成绩的极差6(5分)(2012安徽)设平面与平面相交于直线m,直线a在平面内直线b在平面内,且bm,则“”是“ab”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件7(5分)(2012安徽)(x2+2)()5的展开式的常数项是()A3B2C2D38(5分)(2012安徽)在平面直角坐标系中,点0(0,0),P(6,8),将向量绕点O逆时针方
3、向旋转后得向量,则点Q的坐标是()A(7,)B(7,)C(4,2)D(4,2)9(5分)(2012安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点若|AF|=3,则AOB的面积为()ABCD210(5分)(2012安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A1或3B1或4C2或3D2或4二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置11(5分)(2012安徽)若x,y满足约束条件,则xy的取值范围是12(
4、5分)(2012安徽)某几何体的三视图如图所示,该几何体的表面积是13(5分)(2012安徽)在极坐标系中,圆=4sin的圆心到直线=(R)的距离是14(5分)(2012安徽)若平面向量满足|2|3,则的最小值是15(5分)(2012安徽)设ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是(写出所有正确命题的编号)若abc2,则C若a+b2c,则C若a3+b3=c3,则C若(a+b)c2ab,则C若(a2+b2)c22a2b2,则C三、解答题:本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内16(12分)(2012安徽)设函数f(x
5、)=cos(2x+)+sin2x()求f(x)的最小正周期;()设函数g(x)对任意xR,有g(x+)=g(x),且当x0,时,g(x)=f(x),求g(x)在区间,0上的解析式17(12分)(2012安徽)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量()求X=n+2的概率;()设m=n,求X的分布列和均值(数学期望)18
6、(12分)(2012安徽)平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=现将该平面图形分别沿BC和B1C1折叠,使ABC与A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题()证明:AA1BC;()求AA1的长;()求二面角ABCA1的余弦值19(13分)(2012安徽)设函数f(x)=aex+b(a0)()求f(x)在0,+)内的最小值;()设曲线y=f(x)在点(2,f(2)处的切线方程为y=,求a,b的值20(13分)(2012安徽)如图
7、,点F1(c,0),F2(c,0)分别是椭圆C:(ab0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线于点Q()如果点Q的坐标是(4,4),求此时椭圆C的方程;()证明:直线PQ与椭圆C只有一个交点21(13分)(2012安徽)数列xn满足x1=0,xn+1=x2n+xn+c(nN*)()证明:xn是递减数列的充分必要条件是c0;()求c的取值范围,使xn是递增数列2012年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)(2012安徽)复数数
8、z满足(zi)(2i)=5则z=()A22iB2+2iC22iD2+2i考点:复数代数形式的混合运算菁优网版权所有专题:计算题分析:复数的乘法转化为除法,化简复数方程,利用复数的分子分母同乘分母的共轭复数,然后整理即可解答:解:(zi)(2i)=5zi=z=+i=+i=+i=2+2i故选D点评:本题考查复数的代数形式的混合运算,考查计算能力2(5分)(2012安徽)下列函数中,不满足f(2x)=2f(x)的是()Af(x)=|x|Bf (x)=x|x|Cf(x)=x+1Df(x)=x考点:进行简单的演绎推理菁优网版权所有专题:计算题分析:分别根据函数解析式求出f(2x)与2f(x),看其是否相
9、等,从而可得到所求解答:解:f(x)=|x|,f(2x)=|2x|=2|x|=2f(x),故满足条件;f(x)=x|x|,f(2x)=2x|2x|=2(x|x|)=2f(x),故满足条件;f(x)=x+1,f(2x)=2x+12(x+1)=2f(x),故不满足条件;f(x)=x,f(2x)=2x=2(x)=2f(x),故满足条件;故选C点评:本题主要考查了进行简单的演绎推理,同时考查了运算求解的能力,属于基础题3(5分)(2012安徽)如图所示,程序框图(算法流程图)的输出结果是()A3B4C5D8考点:循环结构菁优网版权所有专题:计算题分析:列出循环中x,y的对应关系,不满足判断框结束循环,
10、推出结果解答:解:由题意循环中x,y的对应关系如图:x1248y1234当x=8时不满足循环条件,退出循环,输出y=4故选B点评:本题考查循环结构框图的应用,注意判断框的条件的应用,考查计算能力4(5分)(2012安徽)公比为的等比数列an的各项都是正数,且a3a11=16,则log2a16=()A4B5C6D7考点:等比数列的通项公式;对数的运算性质菁优网版权所有专题:等差数列与等比数列分析:由公比为的等比数列an的各项都是正数,且a3a11=16,知,故a7=4,=32,由此能求出log2a16解答:解:公比为的等比数列an的各项都是正数,且a3a11=16,a7=4,=32,log2a1
11、6=log232=5故选B点评:本题考查等比数列的通项公式的应用,是基础题解题时要认真审题,仔细解答5(5分)(2012安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A甲的成绩的平均数小于乙的成绩的平均数B甲的成绩的中位数等于乙的成绩的中位数C甲的成绩的方差小于乙的成绩的方差D甲的成绩的极差小于乙的成绩的极差考点:极差、方差与标准差;分布的意义和作用;众数、中位数、平均数菁优网版权所有专题:计算题分析:根据平均数公式分别求出甲与乙的平均数,然后利用方差公式求出甲与乙的方差,从而可得到结论解答:解:=×(4+5+6+7+8)=6,=×(5+5
12、+5+6+9)=6,甲的成绩的方差为×(22×2+12×2)=2,以的成绩的方差为×(12×3+32×1)=2.4故选:C点评:本题主要考查了平均数及其方差公式,同时考查了计算能力,属于基础题6(5分)(2012安徽)设平面与平面相交于直线m,直线a在平面内直线b在平面内,且bm,则“”是“ab”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;平面与平面垂直的性质菁优网版权所有专题:简易逻辑;立体几何分析:通过两个条件之间的推导,利用平面与平面垂直的性质以及结合图形,
13、判断充要条件即可解答:解:由题意可知,bmab,另一方面,如果am,ab,如图,显然平面与平面不垂直所以设平面与平面相交于直线m,直线a在平面内直线b在平面内,且bm,则“”是“ab”的充分不必要条件故选A点评:本题考查必要条件、充分条件与充要条件的判断,平面与平面垂直的性质,考查空间想象能力与作图能力7(5分)(2012安徽)(x2+2)()5的展开式的常数项是()A3B2C2D3考点:二项式定理的应用菁优网版权所有专题:计算题分析:(x2+2)()5的展开式的常数项是第一个因式取x2,第二个因式取;第一个因式取2,第二个因式取(1)5,故可得结论解答:解:第一个因式取x2,第二个因式取,可
14、得=5;第一个因式取2,第二个因式取(1)5,可得2×(1)5=2(x2+2)()5的展开式的常数项是5+(2)=3故选D点评:本题考查二项式定理的运用,解题的关键是确定展开式的常数项得到的途径8(5分)(2012安徽)在平面直角坐标系中,点0(0,0),P(6,8),将向量绕点O逆时针方向旋转后得向量,则点Q的坐标是()A(7,)B(7,)C(4,2)D(4,2)考点:平面向量的坐标运算菁优网版权所有专题:计算题分析:由点0(0,0),P(6,8),知,设,则cos=,sin=,由向量绕点逆时针方向旋转后得向量,由此能求出结果解答:解:点0(0,0),P(6,8),设,则cos=,
15、sin=,向量绕点逆时针方向旋转后得向量,设Q(x,y),则x=10cos(+)=10(coscossinsin)=7,y=10sin(+)=10(sincos+cossin)=,=(7,)故选A点评:本题考查平面向量的坐标运算,是基础题解题时要认真审题,仔细解答9(5分)(2012安徽)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点若|AF|=3,则AOB的面积为()ABCD2考点:直线与圆锥曲线的关系;抛物线的简单性质菁优网版权所有专题:压轴题分析:设直线AB的倾斜角为,利用|AF|=3,可得点A到准线l:x=1的距离为3,从而cos=,进而可求|BF|,|AB|,由
16、此可求AOB的面积解答:解:设直线AB的倾斜角为(0)及|BF|=m,|AF|=3,点A到准线l:x=1的距离为32+3cos=3cos=m=2+mcos()AOB的面积为S=故选C点评:本题考查抛物线的定义,考查三角形的面积的计算,确定抛物线的弦长是解题的关键10(5分)(2012安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A1或3B1或4C2或3D2或4考点:进行简单的合情推理;排列、组合及简单计数问题菁优网版权所有专题:计算题;压轴题分析:由题意,再分类讨
17、论:仅有甲与乙,丙没交换纪念品;仅有甲与乙,丙与丁没交换纪念品,即可得出收到4份纪念品的同学人数解答:解:由题意,设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人综上所述,收到4份纪念品的同学人数为2或4人故选D点评:本题考查组合知识,考查分类讨论的数学思想,属于基础题二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置11(5分)(2012安徽)若x,y满足约束条件,则xy的取值范围是3,0考点:简单线性规划菁优网版权所有专题:计算题分析:画出约束条件表示的可行域,推出三角形的三个点的坐标
18、,直接求出z=xy的范围解答:解:约束条件,表示的可行域如图,由解得A(0,3)、由解得B(0,)、由解得C(1,1);结合函数的图形可知,当直线y=xz平移到A时,截距最大,z最小;当直线y=xz平移到B时,截距最小,z最大所以z=xy在A点取得最小值,在C点取得最大值,最大值是11=0,最小值是03=3;所以z=xy的范围是3,0故答案为:3,0点评:本题考查简单的线性规划的应用,正确画出约束条件的可行域是解题的关键,常考题型12(5分)(2012安徽)某几何体的三视图如图所示,该几何体的表面积是92考点:由三视图求面积、体积菁优网版权所有专题:计算题分析:判断几何体的形状,利用三视图的数
19、据,求出几何体的表面积即可解答:解:几何体是底面为直角梯形高为4的直四棱柱,S上=S下=;S侧=几何体的表面积为 S=92故答案为:92点评:本题考查三视图求解几何体的表面积的方法,正确判断几何体的形状是解题的关键13(5分)(2012安徽)在极坐标系中,圆=4sin的圆心到直线=(R)的距离是考点:简单曲线的极坐标方程;点到直线的距离公式菁优网版权所有专题:计算题分析:将极坐标方程化为直角坐标方程,再用点到直线的距离公式,即可得到结论解答:解:圆=4sin化为直角坐标方程为x2+(y2)2=4直线=化为直角坐标方程为xy=0圆心到直线的距离是故答案为:点评:本题考查极坐标方程与直角坐标方程的
20、互化,考查点到直线的距离公式,属于基础题14(5分)(2012安徽)若平面向量满足|2|3,则的最小值是考点:平面向量数量积的坐标表示、模、夹角;平面向量数量积的运算菁优网版权所有专题:计算题;压轴题分析:由平面向量满足|2|3,知,故=4|4,由此能求出的最小值解答:解:平面向量满足|2|3,=4|4,故的最小值是故答案为:点评:本题考查平面向量数量积的求法,是基础题解题时要认真审题,仔细解答15(5分)(2012安徽)设ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是(写出所有正确命题的编号)若abc2,则C若a+b2c,则C若a3+b3=c3,则C若(a+b)c2ab
21、,则C若(a2+b2)c22a2b2,则C考点:命题的真假判断与应用;余弦定理的应用菁优网版权所有专题:证明题;压轴题分析:利用余弦定理,将c2放大为ab,再结合均值定理即可证明cosC,从而证明C;利用余弦定理,将c2放大为()2,再结合均值定理即可证明cosC,从而证明C;利用反证法,假设C时,推出与题设矛盾,即可证明此命题正确;只需举反例即可证明其为假命题,可举符合条件的等边三角形解答:解:abc2cosC=C,故正确;a+b2ccosC=C,故正确;当C时,c2a2+b2c3ca2+cb2a3+b3与a3+b3=c3矛盾,故正确;举出反例:取a=b=c=2,满足(a+b)c2ab得:C
22、=,故错误;举出反例:取a=b=c=,满足(a2+b2)c22a2b2,此时有C=,故错误故答案为点评:本题主要考查了解三角形的知识,放缩法证明不等式的技巧,反证法和举反例法证明不等式,有一定的难度,属中档题三、解答题:本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内16(12分)(2012安徽)设函数f(x)=cos(2x+)+sin2x()求f(x)的最小正周期;()设函数g(x)对任意xR,有g(x+)=g(x),且当x0,时,g(x)=f(x),求g(x)在区间,0上的解析式考点:三角函数中的恒等变换应用;三角函数的周期性及其求法菁优网版权所有
23、专题:计算题分析:利用两角和的余弦函数以及二倍角公式化简函数的表达式,(1)直接利用周期公式求解即可(2)求出函数g(x)的周期,利用x0,时,g(x)=f(x),对x分类求出函数的解析式即可解答:解:函数f(x)=cos(2x+)+sin2x=cos2xsin2x+(1cos2x)=sin2x(1)函数的最小正周期为T=(2)当x0,时g(x)=sin2x当x时,x+0,g(x)=g(x+)=sin2(x+)=sin2x当x)时,x+0,g(x)=g(x+)=sin2(x+)=sin2xg(x)在区间,0上的解析式:g(x)=点评:本题考查三角函数中的恒等变换应用,三角函数的周期性及其求法,
24、三角函数的化简,考查计算能力17(12分)(2012安徽)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量()求X=n+2的概率;()设m=n,求X的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列菁优网版权所有专题:计算题分析:()根据题意,可知X=n+2表示两次调题均为A类试题,故可求概率
25、;()设m=n,则每次调用的是A类型试题的概率为,随机变量X可取n,n+1,n+2,求出相应的概率,即可得到X的分布列和均值解答:解:()X=n+2表示两次调题均为A类试题,其概率为=()设m=n,则每次调用的是A类型试题的概率为随机变量X可取n,n+1,n+2P(X=n)=(1p)2=;P(X=n+1)=p(1p(1p)p=,P(X=n+2)=p2=分布列如下 X n n+1 n+2 PE(X)=n×+(n+1)×+(n+2)×=n+1点评:本题考查概率知识,考查离散型随机变量的分布列与均值,解题的关键是确定变量的取值,理解其含义18(12分)(2012安徽)平
26、面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=现将该平面图形分别沿BC和B1C1折叠,使ABC与A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题()证明:AA1BC;()求AA1的长;()求二面角ABCA1的余弦值考点:平面与平面垂直的性质;直线与平面垂直的性质;二面角的平面角及求法菁优网版权所有专题:综合题分析:()证明AA1BC,只需证明BC平面OO1A1A,取BC,B1C1的中点为点O,O1,连接AO,OO1,A1O,A1O1,即可证得;
27、()延长A1O1到D,使O1D=OA,则可得ADOO1,AD=OO1,可证OO1面A1B1C1,从而AD面A1B1C1,即可求AA1的长;()证明AOA1是二面角ABCA1的平面角,在OAA1中,利用余弦定理,可求二面角ABCA1的余弦值解答:()证明:取BC,B1C1的中点为点O,O1,连接AO,OO1,A1O,A1O1,AB=AC,AOBC平面ABC平面BB1C1C,平面ABC平面BB1C1C=BCAO平面BB1C1C同理A1O1平面BB1C1C,AOA1O1,A、O、A1、O1共面OO1BC,AOBC,OO1AO=O,BC平面OO1A1AAA1平面OO1A1A,AA1BC;()解:延长A
28、1O1到D,使O1D=OA,则O1DOA,ADOO1,AD=OO1,OO1BC,平面A1B1C1平面BB1C1C,平面A1B1C1平面BB1C1C=B1C1,OO1面A1B1C1,ADOO1,AD面A1B1C1,AD=BB1=4,A1D=A1O1+O1D=2+1=3AA1=5;()解:AOBC,A1OBC,AOA1是二面角ABCA1的平面角在直角OO1A1中,A1O=在OAA1中,cosAOA1=二面角ABCA1的余弦值为点评:本题考查线线垂直,考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角19(13分)(2012安徽)设函数f(x)=aex+b(a0)()求f(x)
29、在0,+)内的最小值;()设曲线y=f(x)在点(2,f(2)处的切线方程为y=,求a,b的值考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程菁优网版权所有专题:综合题分析:()设t=ex(t1),则,求出导函数,再进行分类讨论:当a1时,y0,在t1上是增函数;当0a1时,利用基本不等式,当且仅当at=1(x=lna)时,f(x)取得最小值;()求导函数,利用曲线y=f(x)在点(2,f(2)处的切线方程为y=,建立方程组,即可求得a,b的值解答:解:()设t=ex(t1),则当a1时,y0,在t1上是增函数,当t=1(x=0)时,f(x)的最小值为当0a1时,当且仅当at=1(x=lna)时,f(x)的最小值为b+2;()求导函数,可得)曲线y=f(x)在点(2,f(2)处的切线方程为y=,即,解得点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,属于中档题20(13分)(2012安徽)如图,点F1(c,0),F2(c,0)分别是椭圆C:(ab0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学前教育老师如何做好校车安全工作
- 辐射源识别与超视距直接定位算法的研究
- 性心理基础知识
- 二零二五版商业综合体物业运营管理服务合同3篇
- 二零二五年度个人二手家电交易担保服务协议3篇
- 二零二五年度教育设施更新-化粪池清掏与改造合同3篇
- 铝方通吊顶施工方案
- 透气型塑胶跑道施工方案
- 二零二五年度个人健身卡分期购买合同3篇
- 门窗执手安装施工方案
- 医保政策与健康管理培训计划
- 无人化农场项目可行性研究报告
- 《如何存款最合算》课件
- 社区团支部工作计划
- 拖欠工程款上访信范文
- 2024届上海市金山区高三下学期二模英语试题(原卷版)
- 学生春节安全教育
- 2024-2025年校长在教研组长和备课组长会议上讲话
- 《wifi协议文库》课件
- 《好东西》:女作者电影的话语建构与乌托邦想象
- 教培行业研究系列(七):出国考培的再研究供需变化的新趋势
评论
0/150
提交评论