版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、长春市普通高中2016届高三质量监测(二)数学文科第卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1. 复数,在复平面内对应的点关于直线对称,且,则A. B. C. D. 2. 若实数且,则下列不等式恒成立的是A. B. C. D. 3. 设集合,则A. B. C. D. 4. 运行如图所示的程序框图,则输出的值为是否开始输出结束A. B. C. D. 5. 已知为圆的一条直径,点为直线上任意一点,则的最小值为A.B. C. D. 6. 几何体三视图如图所示,则该几何体的体积为A. B.
2、C. D. 7. 以正方形的一条边的两个端点为焦点,且过另外两个顶点的椭圆与双曲线的离心率之积为A. B. C. D. 8. 已知为椭圆上的点,点为圆上的动点,点为圆上 的动点,则的最大值为A. B. C. D. 9. 已知等差数列的前项和为,且,当取最大值时,的值为A. B. C. D. 10. 已知函数,当时,若在区间内,有两个不同的零点,则实数的取值范围是A.B. C. D. 11. 函数的零点所在的区间是 A. B. C. D. 12. 已知直线与圆相交于、两点,设、分别是以为终边的角,则 A. B. C. D. 第卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题21题为
3、必考题,每个试题考生都必须作答,第22题24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 命题“,”的否定是_.14. 已知实数满足,则的最小值为_.15. 已知向量,则当时,的取值范围是_.16. 已知数列中,对任意的,若满足(为常数),则称该数列为阶等和数列,其中为阶公和;若满足(为常数),则称该数列为阶等积数列,其中为阶公积.已知数列为首项为的阶等和数列,且满足;数列为首项为,公积为的阶等积数列,设为数列的前项和,则 _.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.(
4、本小题满分12分) 已知函数.(1)求函数的最小正周期和单调减区间; (2) 已知的三个内角的对边分别为,其中,若锐角满足,且,求的值.18. (本小题满分12分)近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功的交易,并对其评价进行统计,对商品的好评率为,对服务的好评率为,其中对商品和服务都做出好评的交易为80次. (1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?(2)若针对商品的好评率,采用分层抽样的方式从这20
5、0次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.(,其中)19. (本小题满分12分)在四棱锥中,底面是菱形,平面,点为棱的中点,过作与平面平行的平面与棱,相交于,.(1)证明:为的中点;(2)已知棱锥的高为,且, 、的交点为,连接.求三棱锥外接球的体积.20. (本小题满分12分)椭圆的左右焦点分别为,,且离心率为,点为椭圆上一动点,面积的最大值为.(1)求椭圆的方程;(2) 设椭圆的左顶点为,过右焦点的直线与椭圆相交于,两点,连结, 并延长分别交直线于,两点,问是否为定值?若是,求出此定值;若不是,请说明理由.21. (本小题满分12分)已知函数在点处的切线与
6、轴平行.(1)求实数的值及的极值;(2)若对任意,有,求实数的取值范围;请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修41:几何证明选讲.如图,过圆外一点的作圆的切线,为切点,过的中点的直线交圆于、两点,连接并延长交圆于点,连接交圆于点,若.(1)求证:;(2) 求证:四边形是平行四边形.23. (本小题满分10分)选修44:坐标系与参数方程.在直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其表示何种曲线;(2)若曲线与曲线交于,两点,求的最
7、大值和最小值.24. (本小题满分10分)选修45:不等式选讲.设函数.(1)若不等式恒成立,求实数的取值范围;(2) 若不等式恒成立,求实数的取值范围.长春市普通高中2016届高三质量监测(二)数学(文科)参考答案及评分参考一、选择题(本大题包括12小题,每小题5分,共60分)1. D【命题意图】本题考查复平面上的点与复数的关系,属于基础题.【试题解析】D复数在复平面内关于直线对称的点表示的复数,故选D.2. C【命题意图】本题主要考查不等式的运算性质,是书中的原题改编,考查学生对函数图像的认识. 【试题解析】C根据函数的图像与不等式的性质可知:当时,为正确选项,故选C.3. C【命题意图】
8、本题主要考查集合的化简与交运算,属于基础题. 【试题解析】C 由题意可知,则,所以. 故选C.4. A【命题意图】本题考查程序流程图中循环结构的认识,是一道基本题. 【试题解析】A由算法流程图可知,输出结果是首项为,公比也为的等比数列的前9项和,即为. 故选A.5. A【命题意图】本题考查直线与圆的位置关系以及向量的运算. 【试题解析】A由题可知,从圆外一点指向圆直径的两个端点的向量数量积为定值,即为,其中为圆外点到圆心的距离,为半径,因此当取最小值时,的取值最小,由方程的图像可知的最小值为,故的最小值为1. 故选A.6. C【命题意图】本题通过几何体的三视图来考查体积的求法,对学生运算求解能
9、力有一定要求. 【试题解析】C该几何体可视为长方体挖去一个四棱锥,所以其体积为. 故选C.7. A【命题意图】本题考查椭圆与双曲线离心率的概念,属于基础题.【试题解析】A 以正方形的一条边的两个端点为焦点,且过另外两个顶点的椭圆的离心率为,双曲线的离心率为,故他们的积为1,故选A. 8. B【命题意图】本题主要考查椭圆的定义,是一道中档题. 【试题解析】B 由题可知,故选B.9. B【命题意图】本题考查等差数列的性质,借助前项的取值确定项数,属于基础题.【试题解析】B由题意,不妨设,则公差,其中,因此,即当时,取得最大值. 故选B.10. D【命题意图】本题是最近热点的函数图像辨析问题,是一道
10、较为复杂的难题. 【试题解析】D 由题可知函数在上的解析式为,可将函数在上的大致图像呈现如图:根据的几何意义,轴位置和图中直线位置为表示直线的临界位置,因此直线的斜率的取值范围是. 故选D.11. C【命题意图】本题主要考查函数的零点问题,将零点问题转化为交点问题,是解决本题的关键.【试题解析】C由题意,求函数的零点,即为求两个函数的交点,可知等号左侧为增函数,而右侧为减函数,故交点只有一个,当时,当时,因此函数的零点在内. 故选C.12. D【命题意图】本题是关于三角函数的综合问题,属于中档题. 【试题解析】D 作直线的中垂线,交圆于两点,再将轴关于直线对称,交圆于点,则,如图所示,而,故.
11、 故选D.二、填空题(本大题包括4小题,每小题5分,共20分)13. ,【命题意图】本题考查全称命题的否定,是一道基本题. 【试题解析】由题意可知,命题“,”的否定是:,. 14. 1【命题意图】本题主要考查线性规划问题,是一道常规题. 从二元一次方程组到可行域,再结合目标函数的几何意义,全面地进行考查. 【试题解析】根据方程组获得可行域如下图,令,可化为,因此,当直线过点时,取得最小值为1. 15. 【命题意图】本题考查积分的运算,是一道中档的常规问题. 【试题解析】由题意,为,根据向量的差的几何意义,表示向量终点到终点的距离,当时,该距离取得最小值为1,当时,根据余弦定理,可算得该距离取得
12、最大值为,即的取值范围是. 16. 【命题意图】本题主要考查非常规数列求和问题,对学生的逻辑思维能力提出很高要求,属于一道难题. 【试题解析】由题意可知,又是3阶等和数列,因此该数列将会照此规律循环下去,同理,又是2阶等积数列,因此该数列将会照此规律循环下去,由此可知对于数列,每6项的和循环一次,易求出,因此中有336组循环结构,故. 三、解答题(本大题必做题5小题,三选一选1小题,共70分)17.(本小题满分12分)【命题意图】本小题主要考查三角函数的化简运算,以及三角函数的性质,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求. 【试题解析】解:(1) ,因此的最小正周期
13、为. 的单调递减区间为,即. (6分)(2) 由,又为锐角,则. 由正弦定理可得,则,由余弦定理可知,可求得. (12分)18.(本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,对考生的对数据处理的能力有很高要求.【试题解析】(1) 由题意可得关于商品和服务评价的列联表:对服务好评对服务不满意合计对商品好评8040120对商品不满意701080合计15050200,可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关. (6分)(2) 若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,则好评的交易次数为3次,不满意的次数为2次,令好评的交易为
14、,不满意的交易为,从5次交易中,取出2次的所有取法为、,共计10种情况,其中只有一次好评的情况是、,共计6种,因此,只有一次好评的概率为 (6分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到面面的平行关系在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求. 【试题解析】解:(1)连结.,即为的中位线,即为中点. (6分)(2) 由(1)知,且,即三棱锥外接球为以、为长、宽、高的长方体外接球,则该长方体的体对角线长为,即外接球半径为. 则三棱锥外接球的体积为. (12分)20.(本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲
15、线的综合应用能力,具体涉及到椭圆方程的求法,直线与圆锥曲线的相关知识,以及恒过定点问题. 本小题对考生的化归与转化思想、运算求解能力都有很高要求. 【试题解析】解:(1) 已知椭圆的离心率为,不妨设,即,其中,又面积取最大值时,即点为短轴端点,因此,解得,则椭圆的方程为. (4分)(2) 设直线的方程为, 联立可得,则,直线的方程为, 直线的方程为, 则, 则,则,即为定值0. (12分)21.(本小题满分12分)【命题意图】本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值等情况. 本题对考生的逻辑推理与运算求解能力有较高要求.【试题解析】解(1) 由题意得,又
16、,解得. 令,解得,即有极大值为. (6分)(2) 由,可得令,则,其中,又,则,即,因此实数的取值范围是. (12分) 22.(本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到切割线定理以及三角形相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解(1) 由题意可知,则为的中点,则,即,因此,则,由可得,即,则. (5分)(2) 由(1),又,则,可得,由,则,可得,因此四边形是平行四边形. (10分)23.(本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解(1) 对于曲线有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 箱式变电站设备维护保养方案
- 机场火灾消防安全应急预案设计
- 2024年中考英语热点突破训练任务型阅读含解析
- 人力资源数据管理与分析方案
- 机械设计Ⅰ学习通超星期末考试答案章节答案2024年
- 英语演讲技巧与实训学习通超星期末考试答案章节答案2024年
- 2024年个人烹饪雇佣合同
- 110KV电缆敷设售后服务方案
- 展览空间租赁合同三篇
- 2024年公共设施钢结构设计合同
- 食品安全与营养健康自查制度(学校食堂)
- 车位去化方案
- 中医护理三基理论知识习题+参考答案
- 糖尿病与糖尿病并发症
- 小学校情学情分析
- 项目、项目群和项目组合管理 项目管理指南
- (正式版)JTT 1482-2023 道路运输安全监督检查规范
- 人工智能算力中心平台建设及运营项目可行性研究报告
- MOOC 综合英语-中南大学 中国大学慕课答案
- 2024年山东省潍坊市高三二模语文高分范文2篇:简单并不简单
- 幼儿园主题网络图
评论
0/150
提交评论