版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【步步高】(江苏专用)2017版高考数学一轮复习 第十二章 概率、随机变量及其概率分布 12.1 随机事件的概率 理1概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A)2事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A
2、包含于事件B)BA(或AB)相等关系若BA且ABAB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件(AB),则称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件P(A)P(B)13.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)概率的加法公式如果事件A
3、与事件B互斥,则P(AB)P(A)P(B)(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)1P(B)【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件【思考辨析】判断下面结论是否正确(请在括号中打“”或“×”)(1)事件发生频率与概率是相同的(×)(2)随机事件和随机试验是一回事(×)(3)在大量重复试验中,概率是频率的稳定值()(4)两个事件的和事件是指两个
4、事件都得发生(×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件()(6)两互斥事件的概率和为1.(×)1一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是_至多有一次中靶 两次都中靶只有一次中靶 两次都不中靶答案解析射击两次的结果有:一次中靶;两次中靶;两次都不中靶,故至少一次中靶的互斥事件是两次都不中靶2从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在160,175(单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为_答案0.3解析因为必然事件发生的概率是1,所以该同学的身高超过175 cm的
5、概率为10.20.50.3.3(2015·湖北改编)我国古代数学名著数书九章有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_石答案169解析因为样品中米内夹谷的比为,所以这批米内夹谷为1 534×169(石)4给出下列三个命题,其中正确的命题有_个有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;随机事件发生的频率就是这个随机事件发生的概率答案0解析错,不一定是10件次品;错,是频率而非概率;错,频率不等于概率,这
6、是两个不同的概念5(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则恰有1个红球和全是白球;至少有1个红球和全是白球;至少有1个红球和至少有2个白球;至少有1个白球和至少有1个红球在上述事件中,是对立事件的为_答案解析是互斥不对立的事件,是对立事件,不是互斥事件.题型一事件关系的判断例1某城市有甲、乙两种报纸供居民订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件(1)A与C;(2)B与E;(3)B与C;(4)C与E.解(1)由于事件C
7、“至多订一种报纸”中有可能“只订甲报纸”,即事件A与事件C有可能同时发生,故A与C不是互斥事件(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B与E是互斥事件由于事件B不发生可导致事件E一定发生,且事件E不发生会导致事件B一定发生,故B与E还是对立事件(3)事件B“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B与C不是互斥事件(4)由(3)的分析,事件E“一种报纸也不订”是事件C的一种可能,即事件C与事件E
8、有可能同时发生,故C与E不是互斥事件思维升华对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系判断下列各对事件是不是互斥事件或对立事件:某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中恰有1名男生和恰有2名男生;至少有1名男生和至少有1名女生;至少有1名男生和全是女生解是互斥事件,不是对立事件“恰有1名男生”实质选出的是“1名男生和1名女生”,与“恰有2名男生”不可能同时发生,所以是互斥事件,不是对立事件不是互斥事件,也不是对立事件
9、“至少有1名男生”包括“1名男生和1名女生”与“2名都是男生”两种结果,“至少有1名女生”包括“1名女生和1名男生”与“2名都是女生”两种结果,它们可能同时发生是互斥事件且是对立事件“至少有1名男生”,即“选出的2人不全是女生”,它与“全是女生”不可能同时发生,且其并事件是必然事件,所以两个事件互斥且对立题型二随机事件的频率与概率例2(2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“×”表示未购买. 商品顾客人数甲乙丙丁100×217××200×300&
10、#215;×85×××98×××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为
11、0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为0.2,顾客同时购买甲和丙的概率可以估计为0.6,顾客同时购买甲和丁的概率可以估计为0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大思维升华(1)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对
12、某批产品进行了抽样检测,检查结果如下表所示:抽取球数n501002005001 0002 000优等品数m45921944709541 902优等品频率(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)解(1)依据公式f,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950.题型三互斥事件、对立事件的概率命题点1互斥事
13、件的概率例3袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、黄球和绿球的概率各是多少?解方法一从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A,B,C,D,则有P(A),P(BC)P(B)P(C),P(CD)P(C)P(D),P(BCD)P(B)P(C)P(D)1P(A)1,解得P(B),P(C),P(D),因此得到黑球、黄球、绿球的概率分别是,.方法二设红球有n个,则,所以n4,即红球有4个又得到黑球或黄球的概率是,所以黑球和黄球共5个又总球数是12,所以绿球有12
14、453(个)又得到黄球或绿球的概率也是,所以黄球和绿球共5个,而绿球有3个,所以黄球有532(个)所以黑球有124323(个)因此得到黑球、黄球、绿球的概率分别是,.命题点2对立事件的概率例4某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率解(1)P(A),P(B),P(C).故事件A,B,C的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等
15、奖设“1张奖券中奖”这个事件为M,则MABC.A、B、C两两互斥,P(M)P(ABC)P(A)P(B)P(C).故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,P(N)1P(AB)1.故1张奖券不中特等奖且不中一等奖的概率为.思维升华求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A)1P()求解当题目涉及“至多”“至少”型问题时,多考虑间接法国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期
16、训练,某队员射击一次命中710环的概率如下表所示:命中环数10环9环8环7环概率0.320.280.180.12求该射击队员射击一次:(1)射中9环或10环的概率;(2)命中不足8环的概率解记事件“射击一次,命中k环”为Ak(kN,k10),则事件Ak彼此互斥(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得P(A)P(A9)P(A10)0.280.320.60.(2)设“射击一次,至少命中8环”的事件为B,则表示事件“射击一次,命中不足8环”又BA8A9A10,由互斥事件概率的加法公式得P(B)P(A8)P(A9)P(A10)0.
17、180.280.320.78.故P()1P(B)10.780.22.因此,射击一次,命中不足8环的概率为0.22.22用正难则反思想求互斥事件的概率典例(14分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)思维点拨若某
18、一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解规范解答解(1)由已知得25y1055,x3045,所以x15,y20.2分该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1.9(分钟)8分(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1),P(A2).10分P(A)1P(A1)P(A2
19、)1.12分故一位顾客一次购物的结算时间不超过2分钟的概率为.14分温馨提醒(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义(2)正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式易错提示(1)对统计表的信息不理解,错求x,y,难以用样本平均数估计总体(2)不能正确地把事件A转化为几个互斥事件的和或对立事件,导致计算错误方法与技巧1对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A)2从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事
20、件所含的结果组成的集合彼此的交集为空集,事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集失误与防范1正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件2需准确理解题意,特别留心“至多”“至少”“不少于”等语句的含义A组专项基础训练(时间:45分钟)1下列命题:将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;若事件A与B互为对立事件,则事件A与B为互斥事件;若事件A与B为互斥事件,则事件A与B互为对立事件;若事件A与B互为
21、对立事件,则事件AB为必然事件,其中,真命题是_答案解析对,一枚硬币抛两次,共出现正,正,正,反,反,正,反,反四种结果,则事件M与N是互斥事件,但不是对立事件,故错;对,对立事件首先是互斥事件,故正确;对,互斥事件不一定是对立事件,如中两个事件,故错;对,事件A、B为对立事件,则一次试验中A、B一定有一个要发生,故正确2围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是_答案解析设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则CAB,且事件A与B互斥所以P(C)P
22、(A)P(B).即任意取出2粒恰好是同一色的概率为.3从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的产品不是一等品”的概率为_答案0.35解析“抽到的产品不是一等品”与事件A是对立事件,所求概率1P(A)0.35.4从存放的号码分别为1,2,3,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到次数138576131810119则取到号码为奇数的卡片的频率是_答案0.53解析取到号码为奇数的卡片的次数为:1356181153
23、,则所求的频率为0.53.5对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图根据标准,产品长度在区间20,25)上的为一等品,在区间15,20)和25,30)上的为二等品,在区间10,15)和30,35)上的为三等品用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为_答案0.45解析设区间25,30)对应矩形的另一边长为x,则所有矩形面积之和为1,即(0.020.040.060.03x)×51,解得x0.05.产品为二等品的概率为0.04×50.05×50.45.6在200件产品中,有192件一级品,8件二级品,则下列事件:
24、在这200件产品中任意选出9件,全部是一级品;在这200件产品中任意选出9件,全部是二级品;在这200件产品中任意选出9件,不全是二级品其中_是必然事件;_是不可能事件;_是随机事件答案7已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,
25、该运动员三次投篮恰有两次命中的概率为_答案0.25解析20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.8若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2a,P(B)4a5,则实数a的取值范围是_答案(,解析由题意可知,<a.9(2014·陕西)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2
26、800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0.15,P(B)0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×
27、1 000100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×12024(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率得P(C)0.24.10从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分组:第一组155,160),第二组160,165),第八组190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.(1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180 cm以上(含
28、180 cm)的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E|xy|5,事件F|xy|>15,求P(EF)解(1)第六组的频率为0.08,所以第七组的频率为10.085×(0.008×20.0160.04×20.06)0.06.(2)身高在第一组155,160)的频率为0.008×50.04,身高在第二组160,165)的频率为0.016×50.08,身高在第三组165,170)的频率为0.04×50.2,身高在第四组170,175)的频率为0.04×50.2,由
29、于0.040.080.20.32<0.5,0.040.080.20.20.52>0.5,估计这所学校的800名男生的身高的中位数为m,则170<m<175.由0.040.080.2(m170)×0.040.5,得m174.5,所以可估计这所学校的800名男生的身高的中位数为174.5.由直方图得后三组频率为0.080.060.008×50.18,所以身高在180 cm以上(含180 cm)的人数为0.18×800144.(3)第六组180,185)的人数为4,设为a,b,c,d,第八组190,195的人数为2,设为A,B,则从中选两名男生有
30、ab,ac,ad,bc,bd,cd,aA,bA,cA,dA,aB,bB,cB,dB,AB,共15种情况,因事件E|xy|5发生当且仅当随机抽取的两名男生在同一组,所以事件E包含的基本事件为ab,ac,ad,bc,bd,cd,AB,共7种情况,故P(E).由于|xy|max19518015,所以事件F|xy|>15是不可能事件,P(F)0.由于事件E和事件F是互斥事件,所以P(EF)P(E)P(F).B组专项能力提升(时间:25分钟)11在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是_AB与C是互斥事件,也是对立事件;BC与D是
31、互斥事件,也是对立事件;AC与BD是互斥事件,但不是对立事件;A与BCD是互斥事件,也是对立事件答案解析由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,正确12.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为_答案解析记其中被污损的数字为x,依题意得甲的5次综合测评的平均成绩是×(80×290×389210)90,乙的5次综合测评的平均成绩是×(80×390×2337x9)(442x),令90>(442x),解得x<8,所以x的可能取值是07,因此甲的平均成绩超过乙的平均成绩的概率为.13若A,B互为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感恩节学生演讲稿集锦五篇
- 北京政法职业学院《短片策划与制作》2023-2024学年第一学期期末试卷
- 年会策划方案范文汇编9篇
- 中秋家属慰问信锦集十篇
- 2025年度DJ音乐制作与发行授权合同3篇
- 2021学生感恩老师活动心得体会
- 2025年度智能技术中介服务合同2篇
- 2024年管道爬行内窥镜项目可行性研究报告
- 公务用车定点维修合同
- 苗木订购合同范本
- 英语-北京市西城区2023-2024学年高三期末考试题和答案
- 中职卓越联盟高一上学期1月期末语文试题(含答案)
- 消化内科护士组长个人年终工作总结
- 输配电系统的新能源接入与电价测算
- 信息素养教学大纲
- 反洗钱述职报告
- 《中国缺血性卒中和短暂性脑缺血发作二级预防指南2022》解读
- 广东省大湾区2023-2024学年高一上学期期末生物试题【含答案解析】
- 飞机电气系统电子绪论课件
- 泌尿护士述职报告
- 明细账(三栏式)模板
评论
0/150
提交评论