版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、SpSS软件进行主成分分析的应用例子精编WORD 版IBM system office room A0816H-A0912AAAHH-GX8Q8-GNTHHJ8SPSS软件进行主成分分析的应用例子2002年16家上市公司4项指标的数据见表2,定量综合贏利能力分析如下:表2 2002年16家上市公司4项指标的数据公司销售净利率(XJ资产净利率(x2)净资产收益率(X3)销售毛利率(X4)歌华有线五粮液用友软件太太药业浙江阳光烟台万华方正科43.3117.1121.1129.5511.0017.632.7329.1120.293.9922.657.3912.136.038.628.4113.864
2、.225.449.484.6411.138.7317.297.0010.1311.8315.4117.166.0912.979.3514.354.8944.2589.377325.2236.449.9656.2682.2313.0450.51技 4.437.3014.3629.04红河光明贵州茅台中铁二局5.407.0619.827.268.902.7910.532.9912.535.2418.556.9965.519.7942.0422.72红星发展伊利月殳份青岛海尔湖北宜化雅戈尔福建南纸1主成分分析的做法第一,将EXCEL中的原始数据导入到SPSS软件中;注意:导人Spss的数据不能出现空
3、缺的现象,如出现可用0补齐。第二,对四个指标进行标准化处理;11 “分析” I “描述统计” I “描述”。2弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时, 最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。所做工作:么原始数据的标准化处理数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,可以举个简单的例于,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过 数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为(),方差为1,当然
4、也有其他标准化,比如()-1标准化等等,可根据自 己的研究目的进行选择,这里介绍怎么进行数据的Z标准化。所的结论:标准化后的所有指标数据。注意:SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处 理,所以在得到计算结果后的变量都是指经过标准化处理后的变量,但SPSS并不直接给 出标准化后的数据,如需要得到标准化数据,则需调用Duscriptivus过程进行计算。第三,并把标准化后的数据保存在数据编辑窗口中然后利用SPSS的factor 程对 数据进行因于分析(指标之间的相关性判定略)。1 “分析” I “降维” I“因于分析”选项卡,将要进行分析的变
5、量选入“变量”列表;2设置“描述”“原始分析结果”和“KMC)与Bartlett球形度检验”复选框;3设置“抽取”“碎石图”复选框;4设置“旋转”“最大方差法”复选框;5设置“得分”,勾选巴保存为变量”和“因于得分系数”复选框;6查看分析结果。所做工作:a.查看KMO和Bxtlett的检验KMO值接近1.KMO值越接近于1,意味曽变量间的相关性越强,原有变量越适合 作因于分析;Bnrdcu球度度检验的Sig值越小于显着水平0.05,越说明变量之间存在相关关 系。所的结论:符合因于分析的条件,可以进行因予分析,并进一步完成主成分分析。注意:l. KMO (Kaiser-Meyer-Olkin)K
6、MO统计量是取值在()和1之间。当所有变量间的简单相关系数平方和远远大于 偏相关系数平方和时,KMO值接近1.KMC)值越接近于1,意味着变量间的相关性越 强,原有变量越适合作因于分析;当所有变量间的简单相关系数平方和接近0时, KMO值接近O.KMO值越接近于(),意味着变量间的相关性越弱,原有变量越不适合作 因于分析。Kaiser给出了常用的km。度量标准:0.9以上表示非常适合;().8表示适台;0.7表 示一般;0.6表示不太适合;0.5以下表示极不适合。2. Bardett球度检验:巴特利特球度检验的统计量是根据相关系数矩阵的行列式得到的,如果该值较 大,且其对应的相伴槪率值小于用户
7、心中的显善性水平,那么应该拒绝零假设,认为 相关系数矩阵不可能是单位阵,即原始变量之间存在相关性,适合于做主成份分析; 相反,如果该统计量比较小,且其相对应的相伴槪率大于显着性水平,则不能拒绝零 假设,认为相关系数矩阵可能是单位阵,不宜于做因于分析。Bartlett球度检验的原假设为相关系数矩阵为单位矩阵,Sig值为0. ()01小于显着水 平()()5,因此拒绝原假设,说明变量之间存在相关关系,适合做因于分析。所做工作:b.全部解释方差或者解释的总方差(Totl Variance Explained)初始特征根(Initial Eigmvalucs)大于1,并且累计百分比达到80%85%以上
8、。査看相关系数矩阵的特征根及方差贡献率见表3,由于前2个主成分贡献率A 85%、结合表4中变量不出现丢失,所以提取的主成分个数所的结论:初始特征根:儿=1.897 k2=1.550主成分贡献率:“=0.47429门=0.38740 注意:主成分的数目可以根据相关系数矩阵的特征根来判定,如前所说,相关系数矩阵 的特征根刚好尊于主成分的方差,而方差是变量教据蕴涵信息的重要判据之一。根据X 值决定主成分数目的准则有三:1.只取入1的特征根对应的主成分从Total Variance Explained表中可见,第一、第二和第三个主成分对应的入值都大 于1,这意味善这三个主成分得分的方差都大于1
9、76;本例正是根据这条准则提取主成分 的。2累计百分比达到80%85%以上的'值对应的主成分在Total Variance Explained表可以看出,前三个主成分对应的k值累计百分比达至§ 89.584%,这暗示只要选取三个主成分,信息、量就够了。3. 根据特征根变化的突变点决定主成分的数量从特征根分布的折线图(Scree Plot)上可以看到,第4个入值是一个明显的折点, 这暗示选取的主成分数目应有4。那么,究竟是3个还是4个呢?根据前面两条准 则,选3个大致合适(但小有问题)°第四,计算特征向量矩阵(主成分表达式的系数)【1】将初始因于载荷矩阵中的两列数据输
10、入(可用复制粘贴的方法)到数据编辑窗口(为变量VI、V2);F严 V/SQR(儿)21然后利用“转换” | “计算变量”,打开“计算变量”对话框,在“目标变量”文本框中输入“巧”,然后在数字表达式中输入“Vi/SQRg” 注入=1.897,即可得到特征向量耳;【3】然后利用“转换” | “计算变量”,打开“计算变量”对话框,在“目标变量”文本框中输入宅”,然后在数字表达式中输入“W/SQR()y 注入=1.550,即可得到特征向量电;4最后得到特征向量矩阵(主成分表达式的系数)。所做工作:a.成分矩阵或者初始因子载荷矩阵(Component Matrix)初始因于载荷矩阵见上图,通过初始因于载
11、荷矩阵还不能得出主成分的表达式, 还需要把初始因于载荷矩阵中的每列的系数(主成分的载荷)除以其相应主成分的特 征根的平方根后才能得到主成分系数向量(主成分的得出系数);所的结论:1.用于计算主成分表达式系数的初始因于载荷矩阵中每个指标的载荷。2计算后,得到的主成分表达式的系数矩阵。注意:1主成分表达式的系数提取岀来的全部主成分可以基本反映全部指标的信息,但这些新变量(主成分)的 表达却不能从输出窗口中直接得到,即:主成分中每个指标所对应的系数不是初始因于 载荷矩阵中的对应指标的载荷,因为“Compmmt Matrix”是指初始因于载荷矩阵,每 一个载荷量表示主成分与对应变量的相关系数。2主成分
12、表达式系数的计算方法初始因于载荷矩阵或主成分载荷矩阵(CmpmmMwix)中的数据除以主成分相对 应的特征根(或特征值)开平方根便得到两个主成分中每个指标所对应的系数。F产 Vi/SQRg)3.主成分的指标划分与命名初始因于载荷矩阵或主成分载荷矩阵(Compmzt Wtrix)中每列表示相应主成分与 对应变量的相关系数,每个主成分所反映的原始指标各有不同,为进一步明确每个主 成分侧重反应的具体原始指标,需要对原始指标在每个主成分上的载荷进行比较,其 中载荷越大,其对应的主成分反映该原始指标的信息量越大,反之亦然;如果某一原 始指标在几个主成分的载荷绝对值不相上下,归类比较含混,导致主成分的原始
13、指标 划分不清。说明有必要作进一步的因于分析。从Component Matrix即主成分载荷表中可 看出,哪一原始指标在哪一主成分上 载荷绝对值较大,亦即与该主成分的相关系数较高【注:相关分为正负相关】。第五,计算主成分得分矩阵(主成分得分)1将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分函数的表达式;Zi= Fii*zXt+ F12*zX2+ Fn*zX3+ F14*2X4Z2= F21*zX(+ FzX,+ F23*zXs+ F24*2X4 (其中,z± 为标准化后的数据)12然后利用“转换” | “计算变量”,打开“计算变量”对话框,在“目标变量” 文本框中输入 N
14、”,然后在数字表达式中输入“().531* Z (销售净利率)+().594*Z (资产净 利率)+0.261*Z (净资产收益率)+().546*Z (销售毛利率)”注:巧=0.531,0.594,().261,0.546,即 可得到特征向量乙;3同理ft:F2=-0.412, 0.404, 0.720, -0.383,可得到特征向量 Z?;4求出16家上市公司的主成分值。所做工作:仏对原始数据标准化后的数据标准化后的数据;所的结论:1用于计算主成分表达式系数的初始因于载荷矩阵中每个指标的载荷。注竄:1特征向量矩阵载荷的用运Zl吋心已3性$+ F/z工乙=C比S+比2性3+ F23性FJzX
15、 (其中,NS为标准化后的数据)第六,最后利用主成分函数、综合主成分公式:1将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式;Z=r1*Z1 + r2*Z22然后利用“转换” | “计算变量”,打开“计算变量”对话框,在“目标变量” 文本框中输入“Z”,然后在数字表达式中输入bZ+r?也2” 注:“=().47429,2=0.3874, 即可得到综合主成分;31综合主成分(贏利能力)值。所做工作:z对原始数据标准化后的数据标准化后的数据;所的结论:1用于计算主成分表达式系数的初始因于载荷矩阵中每个指标的载荷。注意:1.综合主成分得分的计算方法Z=r汁乙+r£Z2 (Z:综合主成分得分;匚:主成分贡献率;乙:主成分i得分)表5主成分.综合主成分(赢利能力)值公司Z1Z2Z烟台万1.211.461.14华1.161.461.12五粮液1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《子网掩码的计算》课件
- 第6单元 科技文化与社会生活(B卷·能力提升练)(解析版)
- 百货商店电器城保安工作总结
- 集装箱散货转化公路运输代理协议三篇
- 2023-2024年员工三级安全培训考试题附参考答案【典型题】
- 乘除法应用题课件
- 2023年-2024年企业主要负责人安全培训考试题附解析答案
- 教育资源整合研究报告
- 《督脉与腧穴》课件
- 云平台下的供应链协同-洞察分析
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 《praat使用入门》课件
- 医药销售主管市场规划
- 测量应急管理方案
- 2024-2025学年深圳市初三适应性考试模拟试卷语文试卷
- DB22JT 147-2015 岩土工程勘察技术规程
- 杵针疗法课件
- 期末测试卷-2024-2025学年语文四年级上册统编版
- 期末复习试题(试题)-2024-2025学年三年级上册数学苏教版
- 2024美容院规章制度(31篇)
- 《咳嗽的诊断与治疗指南(2021)》解读课件
评论
0/150
提交评论