《数与形》-教学设计_第1页
《数与形》-教学设计_第2页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1数与形教学设计【教学目标】1、通过计算、猜想、验证、分析,发现数与形之间的对应关系,体会“数形结合” 思想,感受数学学习的意义。2、感受“化数为形、化形为数” ,学会用数形结合、归纳推理等方法解决一些有关 的数学问题。3、使学生在解决问题的过程中,体会数学美感,培养学生探索数学的兴趣,积累 数学活动经验。【教学重点】借助“形”感受与“数”之间的关系,培养学生用“数形结合”的思想解决问题。【教学难点】能用“数形结合”的思想解决问题。【教学准备】课件、不同颜色的小正方形。【课时安排】1课时。【教学过程】一、创设情景,揭示课题1、课件出示图片,感知“形”可以表示“数” 。2、课件出示算式,体会“数

2、”的背后隐藏着“形” 。3、揭示课题。二、化数为形,以形助数1、情景引入“数”和“形”它是一一对应的,它们的这种联系,在我们解决问题的时候会给我 们带来什么启示呢?这样,让我们一起在问题解决的过程中,慢慢体验,好吧?22、解决“数”的问题。(1)提出问题:从1开始的3个连续奇数相加的和是多少?从1开始的5个连续奇数相加的和是多少?从1开始的30个连续奇数相加的和是多少?(2)化难为易,寻找规律复杂的问题往往要先从简单的开始,我们把奇数个数假定在10个以内,看看有没 有什么规律,然后再用规律来解决这个问题。有1个奇数,和就是1.如果有2个这样的奇数,算式是1+3,和是4.如果有3个、4个(3)

3、学生讨论,发现并验证规律 跟同学说说你的发现,任选一个验证你的猜想。(4) 汇报交流,得出规律 汇报:发现什么规律?(平方关系) 验证规律。(5)总结规律,得出结论总结:有1个奇数相加,和就是1X 1,也就是1的平方,有2个奇数相加,和就 是2X2,也就是2的平方,有3个,和就是3的平方有10个,和就是10的平方,20个呢? (20的平方)n个呢? (n的平方)从1开始的n(n表示大于0的整数)个连续奇数相加的和是n2.3、化数为形,以形助数(1)质疑,引发思考从1开始的n(n表示大于0的整数)个连续奇数相加,它的和竟然可以用它的个 数的平方来算。为什么?(2)化数为形 华罗庚说过:不懂就画图

4、。这样,我们为了让大家看得更清楚,咱们不画,我们拼 图行不行?哪个最简单? (1个)我用1个红色的正方形来代表1,可以吧?1行,1列,1x1还是1.(师示范)(3)动手操作,解释原因那1+3,你能用这样的图形拼出个“1+3”来吗?动手拼一拼。 (展演)解释“1+3” 为什么可以用22来算。拼图表示“1+3+5”,(学生操作并展演)解释“1+3+5”为什么可以用32来算。 解释3“1+3+5+7U42”(课件演示)以此类推,如果有n个这样的连续奇数相加就可以用n2来计算,它的和就是n2。(4)小结 当我们遇到比较抽象的数的问题时,可以借助图形来帮忙,这个过程我们把它叫 做“化数为形,以形助数”

5、。三、 化形为数,用数解形1、质疑“数”的规律可以借助图形来思考,那“形”的变化,背后是不是也隐藏着“数” 的规律呢?2、提出问题(口述)有一种桌子,四面坐人,可以坐6个人,两张拼在一起,可以坐10个人, 三张拼在一起,可以坐14个人。那这样的100张桌子拼在一起,可以坐多少个人?3、 分析问题(课件出示)一张桌子,四面坐人可以坐6个人。两张拼在一起,中间还能坐人 吗?(不能)那就坐10个人。3张拼一起,可以坐14个人,这样拼下去,100张桌子 拼在一起,可以坐多少个人?4、 解决问题小组讨论,解决问题。5、 交流汇报,感知“化形为数,用数解形”把“形”的计算问题,用“数”来做会更加的快速、简

6、便、准确。我们把这样的 过程叫做“化形为数,用数解形” 。四、 回顾总结,体会“数形结合”来, 同学们, 回顾这两个例子。第一个例子, “数” 的问题可以借助 “形”来思考。 第二个例子,“形”的知识可以借助“数”来计算。 “数”和“形”各有优点,一一对应, 它们可以互相转化,互为补充。这就要求我们在解决问题时可以把“数”和“形”怎么 样?(结合)把“数”和“形”结合起来,这在数学上是一种重要的思想,就叫“数形 结合思想”。五、拓展延伸,运用“数形结合”1、 拓展延伸,课件出示华罗庚的话并齐读。2、 练习,运用“数形结合”。3、 小结:“数形结合”的思想,不但在小学阶段一直陪伴着我们,更重要的是,它到初中乃至对我们以后的学习都有着十分重要的意义,那我想这也就是我们在这学习这节课4的目的和价值所在。六、反思内化,领悟“数形结合”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论