




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第5 5讲讲 质数与合数质数与合数概念概念1 1、质数、质数只需只需1 1和本身是因数,没有其和本身是因数,没有其他因数他因数( (也叫约数也叫约数) )2 2、合数、合数除了除了1 1 和本身之外,还有其他和本身之外,还有其他的因数的因数留意:留意:1 1既不是质数也不是合数既不是质数也不是合数 分解质因数分解质因数每个合数都可以分解为一系列质数的积的每个合数都可以分解为一系列质数的积的方式,这种过程叫做分解质因数。且这种方式,这种过程叫做分解质因数。且这种分解的结果是独一的。分解的结果是独一的。分解质因数是处理数字问题的常用思绪分解质因数是处理数字问题的常用思绪性质性质1 1、合数有无数
2、个、合数有无数个 假设他情愿,可以用任何一个数产生无数假设他情愿,可以用任何一个数产生无数个合数,比如个合数,比如2n (n2n (n是自然数是自然数) )2 2、质数也有无数个、质数也有无数个 我们找出开场的几个质数:我们找出开场的几个质数:2 2,3 3,5 5,7 7,1111,1313,1717,1919,2323,2929,3131,3737,4141,4343,4747,5353,5959,6161,67,67,可以发现,质数逐渐可以发现,质数逐渐稀疏,即使如此,也可以证明,质数的个数有稀疏,即使如此,也可以证明,质数的个数有无数个。无数个。质数有无穷多个的经典证明质数有无穷多个的
3、经典证明证:假设只需有限多个质数:证:假设只需有限多个质数:p1p1,p2p2,pn , pn , 构造一个数:构造一个数: N=(p1p2pn)!+1, N=(p1p2pn)!+1,那么那么N N是一个新的质数。假设不然,那么是一个新的质数。假设不然,那么N N是一是一个合数,于是个合数,于是N N可以被可以被p1p1,p2p2,pnpn中的某中的某一个质数一个质数pipi整除,而整除,而pipi必然整除必然整除(p1p2pn)!(p1p2pn)!,因此因此1=N- (p1p2pn)!1=N- (p1p2pn)!可被可被pipi整除,矛盾!整除,矛盾! 例题例题1、试判别、试判别359是不是
4、质数是不是质数 分析:首先知道分析:首先知道182359192,约数都是成约数都是成对出现的,因此假设对出现的,因此假设359有一个大于有一个大于18的的约数,那么必有一个小于约数,那么必有一个小于18的约数,因此的约数,因此只需检验到只需检验到18的质因数即可。的质因数即可。 用用2,3,5,7,11,13,17依次试除依次试除359,发现都不是发现都不是359的约数,因此的约数,因此359式质数。式质数。2、求质数、求质数p,使得使得p+10和和p+14都是质数都是质数 实验:此题看不出什么规律,因此无妨取几个数字看实验:此题看不出什么规律,因此无妨取几个数字看看,把看,把p p取值分别为
5、取值分别为2 2,3 3,5 5,7 7,1111可以发现什么?可以发现什么?猜测:除了猜测:除了3 3 之外,后面的质数不太能够满足条之外,后面的质数不太能够满足条件。但是,如何证明这一点?件。但是,如何证明这一点?证明证明: :把一切的整数按照被把一切的整数按照被3 3 除的余数分类:除的余数分类:3k,3k-1.3k+13k,3k-1.3k+13、将、将1,2,3,,2000这些数恣意陈列成这些数恣意陈列成为一行,得到一个数为一行,得到一个数N,求证:,求证:N一定是个一定是个合数。合数。分析:这样的标题看似没有方向,我们须分析:这样的标题看似没有方向,我们须确定一点确定一点其中必然隐藏
6、了一些特点,其中必然隐藏了一些特点,那就是解题的关键。那就是解题的关键。此题现实上用到了被此题现实上用到了被3 整除的数字特征。整除的数字特征。2000个数字陈列的时候,数字之和是一个数字陈列的时候,数字之和是一个不变的东西,抓住这一点即可。个不变的东西,抓住这一点即可。4、知三个不同的质数、知三个不同的质数a,b,c满足满足abbc+a=2000,求求a+b+c。分析:此题用到了分解质因数。分析:此题用到了分解质因数。abbc+a=a(bbc+1)=2453,右边只需右边只需2 个质因数个质因数,故故a=2或或5练习练习1、自然数、自然数n至少含有至少含有2 个大于个大于10的质因的质因数,
7、那么数,那么n的最小值是的最小值是_. 2 、3599是质数还是合数?是质数还是合数? 解:解:3599=3600-1=602-1=60+160-1=61 59因此因此3599是一个合数。是一个合数。3、用、用1、2、3、4、5恣意组成一个恣意组成一个五位数,所得的数中有几个质数?五位数,所得的数中有几个质数?解解:由于由于1+2+3+4+5=15可以被可以被3整整除除,因此这个五位数可以被因此这个五位数可以被3 整除整除,因因此其中没有质数此其中没有质数.4、p是质数。是质数。 +2也是质数,那么也是质数,那么2019+ _ 2p4p 5、3 个不同的质数个不同的质数m,n,p满足满足m+n
8、=p,那么,那么mnp的最小值是的最小值是_ 6、知三个质数、知三个质数m,n,p的乘积等于它们的的乘积等于它们的和的和的5 倍,那么倍,那么 _ 222mnp7、2 个质数的和为个质数的和为2019,那么它们的,那么它们的积是积是_ 8 、 a , b , c , d , e 是是 5 个 质 数 , 其 中个 质 数 , 其 中ab,ac,ad,并且并且a+b+c+d=e,那那么么a=_9、知正整数、知正整数p,q都是质数,且都是质数,且7p+q与与pq+11都是质数,试求都是质数,试求p,q的值。的值。 10、(1)能否存在延续个正整数,他们能否存在延续个正整数,他们均为合数?假设存在,求出其中一组最小均为合数?假设存在,求出其中一组最小值;假设不存在,阐明理由值;假设不存在,阐明理由(2)写出写出10个延续的正整数,使其中每个个延续的正整数,使其中每个都是合数都是合数 .1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Diclofenac-acyl-β-D-glucuronide-allyl-ester-生命科学试剂-MCE
- AF615-生命科学试剂-MCE
- 1R-3S-3-Amino-cyclopentanol-生命科学试剂-MCE
- 电梯安装玻璃合同范本
- 2025年电子脂肪秤合作协议书
- 取暖工程合同范本
- 2025年刀轴式刨片机类合作协议书
- 预售合同范本
- 汽车股份合同范本
- 非金属卤化物及硫化物企业ESG实践与创新战略研究报告
- 《中小学科学教育工作指南》解读与培训
- 学校食堂“三同三公开”制度实施方案
- 跨学科主题学习的意义与设计思路
- 2025年浙江国企台州黄岩站场管理服务有限公司招聘笔试参考题库附带答案详解
- 2025年湖南高速铁路职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 殡仪馆管理制度
- 2025年医院财务工作计划(2篇)
- DB32T 4969-2024大型医用设备使用监督管理平台基础数据采集规范
- 2025年大连长兴开发建设限公司工作人员公开招聘高频重点提升(共500题)附带答案详解
- -人教版四年级下册英语全册教案-
- 教科版三年级下册科学全册单元教材分析
评论
0/150
提交评论