




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2018年湖南省常德市中考真题数学一、选择题(本大题8个小题,每小题3分,满分24分)1.-2的相反数是( )A.2B.-2C.2-1D.-解析:-2的相反数是:2.答案:A2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A.1B.2C.8D.11解析:设三角形第三边的长为x,由题意得:7-3x7+3,4x10.答案:C3.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是( )A.abB.|a|b|C.ab0D.-ab解析:由数轴可得,-2a-10b1,ab,故选项A错误,|a|b|,故选项B错误,ab0,故选项C错误,-ab,故选项D正确.答案:D4.若一次函数y
2、=(k-2)x+1的函数值y随x的增大而增大,则( )A.k2B.k2C.k0D.k0解析:由题意,得k-20,解得k2.答案:B5.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )A.甲B.乙C.丙D.丁解析:1.52.63.53.68,甲的成绩最稳定,派甲去参赛更好.答案:A6.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,BAC=90°,AD=3,则CE的长为( )A.6B.5C.4D.解析:ED是BC的垂直平分线,DB=
3、DC,C=DBC,BD是ABC的角平分线,ABD=DBC,C=DBC=ABD=30°,BD=2AD=6,CE=CD×cosC=.答案:D7.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为( )A.B.C.D.解析:从正面看是一个等腰三角形,高线是虚线.答案:D8.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d-b×c,例如:=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中.问题:对于用上面的方法解二元一
4、次方程组时,下面说法错误的是( )A.D=-7B.Dx=-14C.Dy=27D.方程组的解为解析:A、D=-7,正确;B、Dx=-2-1×12=-14,正确;C、Dy=2×12-1×3=21,不正确;D、方程组的解:x=2,y=-3,正确.答案:C二、填空题(本大题8个小题,每小题3分,满分24分)9.-8的立方根是_.解析:(-2)3=-8,-8的立方根是-2.答案:-210.分式方程的解为x=_.解析:去分母得:x+2-3x=0,解得:x=1,经检验x=1是分式方程的解.答案:111.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为_
5、千米.解析:1 5000 0000=1.5×108.答案:1.5×10812.一组数据3,-3,2,4,1,0,-1的中位数是_.解析:将数据重新排列为-3、-1、0、1、2、3、4,所以这组数据的中位数为1.答案:113.若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是_(只写一个).解析:关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,=b2-4×2×30,解得:b-或b.答案:614.某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9x5.5这个范围的频率为_.视力x频数4.0x4.32
6、04.3x4.6404.6x4.9704.9x5.2605.2x5.510解析:视力在4.9x5.5这个范围的频数为:60+10=70,则视力在4.9x5.5这个范围的频率为:=0.35.答案:0.3515.如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知DGH=30°,连接BG,则AGB=_.解析:由折叠的性质可知:GE=BE,EGH=ABC=90°,EBG=EGB.EGH-EGB=EBC-EBG,即:GBC=BGH.又ADBC,AGB=GBC.AGB=BGH.DGH=30°,AGH=150°,AGB=AGH=75
7、76;.答案:75°16.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是_.解析:设报4的人心想的数是x,报1的人心想的数是10-x,报3的人心想的数是x-6,报5的人心想的数是14-x,报2的人心想的数是x-12,所以有x-12+x=2×3,解得x=9.答案:9三、(本大题2个小题,每小题5分,满分10分)17.计算:.解析:本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行
8、计算,然后根据实数的运算法则求得计算结果.答案:原式=1-(-1)+-4=1-+1+-4=-2.18.求不等式组的正整数解.解析:根据不等式组解集的表示方法:大小小大中间找,可得答案.答案:,解不等式,得x-2,解不等式,得x,不等式组的解集是-2x,不等式组的正整数解是1,2,3,4.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:,其中x=.解析:直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.答案:原式=x-3,把x=代入得:原式=-3=-.20.如图,已知一次函数y1=k1x+b(k10)与反比例函数(k20)的图象交于A(4,1),B(n,-2)两点.
9、(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1y2时x的取值范围.解析:(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1y2时x的取值范围.答案:(1)反比例函数(k20)的图象过点A(4,1),k2=4×1=4,反比例函数的解析式为.点B(n,-2)在反比例函数的图象上,n=4÷(-2)=-2,点B的坐标为(-2,-2).将A(4,1)、B
10、(-2,-2)代入y1=k1x+b,解得:,一次函数的解析式为y=x-1.(2)观察函数图象,可知:当x-2和0x4时,一次函数图象在反比例函数图象下方,y1y2时x的取值范围为x-2或0x4.五、(本大题2个小题,每小题7分,满分14分)21.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果
11、不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解析:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.答案:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店
12、5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.甲种水果不超过乙种水果的3倍,a3(120-a),解得:a90.k=-100,w随a值的增大而减小,当a=90时,w取最小值,最小值-10×90+2400=1500.月份该店需要支付这两种水果的货款最少应是1500元.22.图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1
13、绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°0.6,cos37°0.8,1.4)解析:作BEAD于点E,作CFAD于点F,延长FC到点M,使得BE=CM,则EM=BC,在RtABE、RtCDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在RtMEF中利用勾股定理即可求出EM的长,此题得解.答案:作BEAD于点E,作CFAD于点F,延长FC到点M,使得BE=CM,如图所示.AB=CD,AB+CD=AD=2,AB=CD=1.在RtABE中,AB=1,A=37°,BE=AB
14、·sinA0.6,AE=AB·cosA0.8.在RtCDF中,CD=1,D=45°,CF=CD·sinD0.7,DF=CD·cosD0.7.BEAD,CFAD,BECM,又BE=CM,四边形BEMC为平行四边形,BC=EM,CM=BE.在RtMEF中,EF=AD-AE-DF=0.5,FM=CF+CM=1.3,EM=1.4,B与C之间的距离约为1.4米.六、(本大题2个小题,每小题8分,满分16分)23.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题
15、:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.解析:(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的
16、百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.答案:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50-8-20-6-2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3)篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概
17、率=.24.如图,已知O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AEBC交CF于E.(1)求证:EA是O的切线;(2)求证:BD=CF.解析:(1)根据等边三角形的性质可得:OAC=30°,BCA=60°,证明OAE=90°,可得:AE是O的切线;(2)先根据等边三角形性质得:AB=AC,BAC=ABC=60°,由四点共圆的性质得:ADF=ABC=60°,得ADF是等边三角形,证明BADCAF,可得结论.答案:(1)连接OD,O是等边三角形ABC的外接圆,OAC=30°,BCA=60°
18、,AEBC,EAC=BCA=60°,OAE=OAC+EAC=30°+60°=90°,AE是O的切线;(2)ABC是等边三角形,AB=AC,BAC=ABC=60°,A、B、C、D四点共圆,ADF=ABC=60°,AD=DF,ADF是等边三角形,AD=AF,DAF=60°,BAC+CAD=DAF+CAD,即BAF=CAF,在BAD和CAF中,BADCAF,BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二
19、次函数的解析式;(2)若M是OB上的一点,作MNAB交OA于N,当ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQx轴与抛物线交于Q.过A作ACx轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.解析:(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x-12,直线MN的解析式为y=2x-2t,再通过解方程组得N(),接着利用三角形面积公式,利用SAMN=SAOM-SNOM得到SAMN=,然后根据二次函数的性质解决问题;(3)设Q(m,),根据
20、相似三角形的判定方法,当时,PQOCOA,则|=2|m|;当时,PQOCAO,则,然后分别解关于m的绝对值方程可得到对应的P点坐标.答案:(1)抛物线过原点,对称轴是直线x=3,B点坐标为(6,0),设抛物线解析式为y=ax(x-6),把A(8,4)代入得a·8·2=4,解得a=,抛物线解析式为y=x(x-6),即y=;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,直线AB的解析式为y=2x-12,MNAB,设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=-2t,直
21、线MN的解析式为y=2x-2t,解方程组得,则N(),SAMN=SAOM-SNOM=-t2+2t=-(t-3)2+3,当t=3时,SAMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,),OPQ=ACO,当时,PQOCOA,即,PQ=2PO,即|=2|m|,解方程=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程=-2m得m1=0(舍去),m2=-2,此时P点坐标为(-2,4);当时,PQOCAO,即,PQ=PO,即,解方程得m1=0(舍去),m2=8(舍去),解方程得m1=0(舍去),m2=2,此时P点坐标为(2,-1);综上所述,P点坐标为(14,28)或(
22、-2,4)或(2,-1).26.已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DHAE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当ENBD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NEEC时,求证:AN2=NC·AC.解析:(1)先判断出OD=OA,AOM=DON,再利用同角的余角相等判断出ODN=OAM,判断出DONAOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出BDN=22.5°,即可判断出AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秋新人教版七年级上册道德与法治教学课件 5.1 走近老师
- 心理测量表合同范本
- 小学生评奖课件
- 地基处理劳务合同范本
- 2025至2030年中国回转窑耐热钢窑尾护板数据监测研究报告
- 2025至2030年中国冷卷弹簧数据监测研究报告
- 第二课堂管理培训
- 2025至2030年中国主轴二档齿轮数据监测研究报告
- 2025年中国阶梯形机械格栅市场调查研究报告
- 2025年度竞业禁止劳动合同在金融行业的具体实施
- 四年级全册《劳动》课程知识点汇总精排
- 人本位医疗培训课件
- 《供应链管理》课程整体设计
- 水利工程危险源辨识评价及风险管控清单
- 申论范文:社区微治理 共建美好家园
- 高等工程热力学教案课件
- 汽车机械基础PPT(第3版)全套完整教学课件
- 医疗器械质量管理制度
- 【招标控制价编制研究文献综述(论文)4800字】
- 红楼梦读书笔记4000字(3篇)
- 纹绣培训专业艺术教程课件
评论
0/150
提交评论