小升初数学列方程解应用题(共6页)_第1页
小升初数学列方程解应用题(共6页)_第2页
小升初数学列方程解应用题(共6页)_第3页
小升初数学列方程解应用题(共6页)_第4页
小升初数学列方程解应用题(共6页)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上小升初数学列方程解应用题1第十四讲 列方程解应用题 在小学数学中介绍了应用题的算术解法及常见的典型应用题。然而算术解法往往局限于从已知条件出发推出结论,不允许未知数参加计算,这样,对于较复杂的应用题,使用算术方法常常比较困难。而用列方程的方法,未知数与已知数同样都是运算的对象,通过找出“未知”与“已知”之间的相等关系,即列出方程(或方程组),使问题得以解决。所以对于应用题,列方程的方法往往比算术解法易于思考,易于求解。列方程解应用题的一般步骤是:审题,设未知数,找出相等关系,列方程,解方程,检验作答。其中列方程是关键的一步,其实质是将同一个量或等量用两种方式表达出来,

2、而要建立这种相等关系必须对题目作细致分析,有些相等关系比较隐蔽,必要时要应用图表或图形进行直观分析。14.1 列简易方程解应用题10x+1,从而有 3(105+x)=10x+1, 7x, x42857。答:这个六位数为。说明:这一解法的关键有两点:示出来,这里根据题目的特点,采用“整体”设元的方法很有特色。(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。因此,要提高列方程解应用题的能力,就应在这两方面下功夫。例2 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了

3、10分50秒。问:队伍有多长?分析:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。如果设通讯员从末尾到排头用了x秒,那么通讯员从排头返回排尾用了(650-x)秒,于是不难列方程。解:设通讯员从末尾赶到排头用了x秒,依题意得2.6x-1.4x=2.6(650-x)+1.4(650-x)。解得x500。推知队伍长为(2.6-1.4)500=600(米)。答:队伍长为600米。说明:在设未知数时,有两种办法:一种是设直接未知数,求什么、设什么;另一种设间接未知数,当直接设未知数不易列出方程时,就设与

4、要求相关的间接未知数。对于较难的应用题,恰当选择未知数,往往可以使列方程变得容易些。例3 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?分析:本题属于追及问题,行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒。火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差。如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x-1)22或(x-3)26,由此不难列出方程。解:设这

5、列火车的速度是x米/秒,依题意列方程,得(x-1)22=(x-3)26。解得x=14。所以火车的车身长为(14-1)22=286(米)。答:这列火车的车身总长为286米。例4 如图,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米。当乙第一次追上甲时在正方形的哪一条边上?分析:这是环形追及问题,这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环行”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上。解:设追上甲时乙走了x分。依题意,甲在乙前方390=270(米),故有72x65x+270。由于正方形边长为90米

6、,共四条边,故由可以推算出这时甲和乙应在正方形的DA边上。答:当乙第一次追上甲时在正方形的DA边上。例5 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶。已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为21。某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时。问:甲、乙两港相距多少千米?分析:这是流水中的行程问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度。解答本题的关键是要先求出水流速度。解:设甲、乙两港相距x千米,原来水流速度为a千米/时根据题意可知,逆水速度与顺水速度的比为21,即(8-a)(8a)12,再根据暴雨天水流速度变为2a千

7、米/时,则有 解得x=20。答:甲、乙两港相距20千米。例6 某校组织150名师生到外地旅游,这些人5时才能出发,为了赶火车,6时55分必须到火车站。他们仅有一辆可乘50人的客车,车速为36千米/时,学校离火车站21千米,显然全部路程都乘车,因需客车多次往返,故时间来不及,只能乘车与步行同时进行。如果步行每小时能走4千米,那么应如何安排,才能使所有人都按时赶到火车站?赶到火车站,每人步行时间应该相同,乘车时间也相同。设每人步行x时,客车能否在115分钟完成。解:把150人分三批,每批50人,步行速度为4千米/时,汽车速度为解得x1.5(时),即每人步行90分,乘车25分。三批人5时同时出发,第一批人乘25分钟车到达A点,下车步行;客车从A立即返回,在B点遇上步行的第二批人,乘25分钟车,第二批人下车步行,客车再立即返回,又在C点遇到步行而来的第三批人,然后把他们直接送到火车站。如此安排第一、二批人按时到火车站是没问题的,第三批人是否正巧可乘25分钟车呢?必须计算。次返回的时间是20分,同样可计算客车第二次返回的时间也应是20分,所以当客车与第三批人相遇时,客车已用252202=90(分),还有115-90=25(分),正好可把第三批人按时送到。 因此可以按上述方法安排。说明:列方程,解出需步

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论