下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 备战考高基础复习资料椭圆标准方程(焦点在轴)(焦点在轴)定 义第一定义:平面内与两个定点,的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。第二定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数时,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线是椭圆的准线。范 围 顶点坐标 对 称 轴轴,轴;长轴长为,短轴长为对称中心原点焦点坐标 焦点在长轴上,; 焦距:离 心 率 () ,,越大椭圆越扁,越小椭圆越圆。准线方程准线垂直于长轴,且在椭圆外;两准线间的距离:顶点到准线的距离顶点()到准线()的距离为顶点()到准线()
2、的距离为焦点到准线的距离焦点()到准线()的距离为焦点()到准线()的距离为椭圆上到焦点的最大(小)距离最大距离为:最小距离为:相关应用题:远日距离近日距离椭圆的参数方程(为参数)(为参数)椭圆上的点到给定直线的距离利用参数方程简便:椭圆(为参数)上一点到直线的距离为:直线和椭圆的位置椭圆与直线的位置关系:利用转化为一元二次方程用判别式确定。相交弦AB的弦长通径:过椭圆上一点的切线 利用导数 利用导数双曲线双曲线标准方程(焦点在轴)标准方程(焦点在轴)定义第一定义:平面内与两个定点,的距离的差的绝对值是常数(小于)的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。PP第二定义
3、:平面内与一个定点和一条定直线的距离的比是常数,当时,动点的轨迹是双曲线。定点叫做双曲线的焦点,定直线叫做双曲线的准线,常数()叫做双曲线的离心率。PPPP范围,对称轴轴 ,轴;实轴长为,虚轴长为对称中心原点焦点坐标 焦点在实轴上,;焦距:顶点坐标(,0) (,0)(0, ,) (0,)离心率1)准线方程准线垂直于实轴且在两顶点的内侧;两准线间的距离:顶点到准线的距离顶点()到准线()的距离为顶点()到准线()的距离为焦点到准线的距离焦点()到准线()的距离为焦点()到准线()的距离为渐近线方程 () ()共渐近线的双曲线系方程()()直线和双曲线的位置双曲线与直线的位置关系:利用转化为一元二次方程用判别式确定。二次方程二次项系数为零直线与渐近线平行。相交弦AB的弦长通径:过双曲线上一点的切线 或利用导数 或利用导数抛物线抛物线xyOlFxyOlFlFxyOxyOlF定义平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线。=点M到直线的距离范围对称性关于轴对称关于轴对称焦点(,0)(,0)(0,)(0,)焦点在对称轴上顶点离心率=1准线方程准线与焦点位于顶点两侧且到顶点的距离相等。顶点到准线的距离焦点到准线的距离焦点弦的几条性质oxFy设直线过焦点F与抛物线>0)交于,则:(1)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【2021届备考】2021届全国名校数学试题分类解析汇编(12月第三期):M单元-推理与证明
- 音乐教师培训总结5篇
- 【红对勾】2021-2022学年人教版高中政治必修一习题-第一单元-生活与消费-课时作业6
- 【每日一练】《晨读晚练》英语高三年级上学期第五周参考答案及解析5
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮专项强化训练(五)圆锥曲线的综合问题-
- 2025年七年级统编版语文寒假预习 第01讲 孙权劝学
- 【全程复习方略】2020年高考化学单元评估检测(四)(鲁科版-福建专供)
- 浙江省温州苍南2023-2024学年第二学期期末检测卷 六年级下册科学
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮课时作业:10.3-几何概型-
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮课时作业:2.3-函数的奇偶性与周期性-
- 泰州市2022-2023学年七年级上学期期末数学试题【带答案】
- JGJ276-2012 建筑施工起重吊装安全技术规范 非正式版
- QCT1067.4-2023汽车电线束和电器设备用连接器第4部分:设备连接器(插座)的型式和尺寸
- 2019电子保单业务规范
- 学堂乐歌 说课课件-2023-2024学年高中音乐人音版(2019) 必修 音乐鉴赏
- 幕墙工程材料组织、运输装卸和垂直运输方案
- 灌溉用水循环利用技术
- 泌尿科一科一品汇报课件
- 2024年江西省三校生高职英语高考试卷
- 中国古代文学智慧树知到期末考试答案章节答案2024年广州大学
- 重庆市南岸区2022-2023学年五年级上学期期末语文试卷
评论
0/150
提交评论