版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2017-2018学年天津市和平区七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题2分,共24分.在每小题给出的四个选 项中,只有一项是符合题目要求的)1. (2.00分)9的平方根是()A. 3 B.:; C. ±3 D.,;2. (2.00分)下列不等式一定成立的是()A. 2x<5 B. - x>0 C. |x|+1>0 D. x2>03. (2.00分)估计年的值在两个整数()A. 3与4之间 B. 5与6之间 C. 6与7之间 D. 3与10之间4. (2.00分)过点A (-2, 3)且垂直于y轴的直线交y轴于点B,则点B的坐 标为()
2、A. (0, -2)B. (3, 0) C. (0, 3) D. (-2, 0)5. (2.00分)已知卜'3+t ,则用含x的式子表示y为()lv=3-2tA. y=-2x+9B. y=2x- 9 C, y=-x+6 D , y=-x+96. (2.00分)将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为20,第三组的频率为0.2,则第四组的频率为()A. 4 B. 14 C. 0.28 D. 507. (2.00分)如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为(8. (2.00分)将点 P (m+2,那么P酌坐标是(
3、)A. 1B. 2C. 3 D.2m+1)向左平移1个单位长度到P',且P在y轴上,A. (0, T)B. (0, -2)C. (0. -3) D. (1, 1) 9. (2.00分)方程x-2y=-3和2x+3y=1的公共解是(y=l;二的解集为-2<x<3,则a的取值范围是3xf2>4x-l( )A. / b. a=- 2 C. a> - 2 D. a< - 1口 211. (2.00分)如果/ a与/ B的两边分别平行,/ a比/ 0的3倍少40°,则/ a的度数为()A. 200 B. 125. 20°或 125° D
4、. 35°或 11012. (2.00分)已知关于x、y的方程组尸3尸八,其中3< a< 1,给出下列 -3a说法:当a=1时,方程组的解也是方程x+y=2-a的解;当a=- 2时,x、y的值互为相反数;若x< 1,则1&y&4;I,是方程组的解.其中说法错 lv=-l误的是()A.B. C.D.二、填空题(本大题共6小题,每小题3分.共18分)13. (3.00分)如果x2=1,那么正的值是.14. (3.00分)已知点 M (a, b),且a?b> 0, a+b<0,则点 M在第 象限.15. (3.00分)若声;是方程 x 2y=0
5、 的解,则 3a- 6b - 3=.16. (3.00分)方程组,2Hpp=1的解是.h3x-y-z=217. (3.00分)如图,已知/ 1= (3x+24) °, /2= (5x+20) °,要使 mil n,那么 /1= (度).18. (3.00分)已知x-y=3,且x>2, y< 1 ,则x+y的取值范围是.三、解答题(本大题共7小题,共58分.解答应写出文字说明、演算步骤或证明 过程)3(x+12(y-l)=0弦以一1 (1)20. (7.00分)解不等式组,5耳-1飞五工,请结合题意填空,完成本题的解答.(1)解不等式(1),得;(2)解不等式(2
6、),得;(3)把不等式(1)和(2)的解集在数轴上表示出来:| -3 -2 -1 o i 2(4)原不等式组的解集为.21. (8.00分)我市盘山、黄崖关长城、航母公园三景区是人们节假日游玩的热 点景区.某中学对七年级(1)班学生今年暑假到这三景区游玩的计划做了全面 调查,调查分四个类别,A游三个景区;B:游两个景区;C:游一个景区;D: 不到这三个景区游玩.根据调查的结果绘制了不完全的条形统计图和扇形统计图(如图、图)如下,请根据图中所给的信息,解答下列问题:20 r 7x(1)求七年级(1)班学生人数;(2)将条形统计图补充完整;(3)求扇形统计图中表示“啖别”的圆心角的度数;(4)若该
7、中学七年级有学生520人,求计划暑假选择 A B、C三个类别出去游玩的学生有多少人?22. (8.00分)已知方程组卜土"力中x为非正数,y为负数. x+y= -7-a(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解集为x<1.160元、120元的A、B两种型23. (10.00分)某电器超市销售每台进价分别为号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)
8、若超市准备用不多于7500元的金额再采购这两种型号的电风扇共 50台, 求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的 目标?若能,请给出相应的采购方案;若不能,请说明理由.24. (8.00分)如图,已知/ A=/ AGE, / D=/ DGC(1)试说明 AB/ CD;(2)若/1 + /2=180°,且/ BEC=2 B+60°,求/ C的度数.25. (10.00分)在平面直角坐标系中,点 A、B在坐标轴上,其中A (0, a)、B(b, 0)满足:|2a- b- 1|+ .-: =0.(1)求A、B
9、两点的坐标;(2)将线段AB平移到CD,点A的对应点为C (-2, t),如图1所示.若三角 形ABC的面积为9,求点D的坐标;(3)平移线段AB到CD,若点G D也在坐标轴上,如图2所示,P为线段AB 上的一动点(不与 A、B重合),连接OP, PE平分/ OPB, ZBCE=2/ ECD求证: /BCD=3( /CEP- ZOPE).2017-2018学年天津市和平区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题2分,共24分.在每小题给出的四个选 项中,只有一项是符合题目要求的)1. (2.00分)9的平方根是()A. 3 B. :; C. ±3
10、 D | 立【分析】依据平方根的定义求解即可.【解答】解:9的平方根是± 3.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2. (2.00分)下列不等式一定成立的是()A. 2x<5 B. - x>0 C. |x|+1>0 D. x2>0【分析】利用不等式的基本性质判断即可.【解答】解:A、2x不一定小于5,不符合题意;B、-x不一定大于0,不符合题意;C、|x|+1>1>0,符合题意;D、x2>0,不符合题意,故选:C.【点评】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.3. (2.00
11、分)估计年的值在两个整数()A. 3与4之间 B. 5与6之间 C. 6与7之间 D. 3与10之间【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【解答】解::亚何反.5<V30<6,炽的值在5与6之间.故选:B.【点评】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关 键.4. (2.00分)过点A (-2, 3)且垂直于y轴的直线交y轴于点B,则点B的坐标为()A. (0, -2)B. (3, 0) C. (0, 3) D. (-2, 0)【分析】直接利用点的坐标特点进而画出图形得出答案.【解答】解:如图所示:过点A (- 2, 3)且垂直于y
12、轴的直线交y轴于点B,故点B的坐标为:(0, 3).故选:C.【点评】此题主要考查了点的坐标,正确画出图形是解题关键.5. (2.00分)已知一一:,则用含x的式子表示丫为()v=3-2tA. y=-2x+9B. y=2x-9 C, y=-x+6 D , y=-x+9【分析】【解答】消去t,确定出x与y的关系式即可.解:X2+得:2x+y=9,即 y=2x+9,故选:A.【点评】此题考查了解二元一次方程组,以及解二元一次方程,熟练掌握运算法 则是解本题的关键.6. (2.00分)将50个数据分成5组列出频数分布表,其中第一组的频数为 6,第二组与第五组的频数和为20,第三组的频率为0.2,则第
13、四组的频率为()A. 4 B. 14 C. 0.28 D. 50【分析】首先求得第三组的频数,则利用总数减去其它各组的频数就可求得,利用频数除以总数即可求解.【解答】解:第三组的频数是:50X 0.2=10,则第四组的频数是:50- 6- 20- 10=14,则第四组的频率为:11=0.28.50故选:C.【点评】本题考查了频率的公式:频率总额即可求解.7. (2.00分)如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A. 1B. 2C. 3 D. 4【分析】设两个正方形的边长是x、y (x<y),得出方程x2=4, y2=9,求出x=2, y=3,代入
14、阴影部分的面积是(y-x) x求出即可.【解答】解:设两个正方形的边长是x、y (x<y),贝U x2=4, y2=9,x=2, y=3,则阴影部分的面积是(y-x) x= (3-2) X2=2,故选:B.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.8. (2.00分)将点P (m+2, 2m+1)向左平移1个单位长度到P',且P在y轴上, 那么P酌坐标是()A. (0, T) B. (0, -2)C. (0. -3) D. (1, 1)【分析】由平移的性质,构建方程即可解决问题;【解答】解:P (m+2, 2m+1)向左平移1个单位长度到P'(m+1
15、, 2m+1),.P在y轴上,m+1=0,m=- 1,.P' (0, T),故选:A.【点评】本题考查坐标与图形的变化-平移,解题的关键是熟练掌握平移的性质, 学会构建方程解决问题.9. (2.00分)方程x-2y=-3和2x+3y=1的公共解是(D.K=-l【分析】联立两方程组成方程组,求出解即可.-X 2得:7y=7,解得:y=1,把y=1代入得:x=- 1,则方程组的解为klV=1故选:D.【点评】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.10. (2.00分)若不等式组卜-2色>2 3xf2>4x-l的解集为-2<x<3,则a的取值范围是
16、( )A.4 B. a=- 2 C. a> - 2 D. a< - 1【分析】先计算出每个不等式的解集,再求其公共部分,让 2a+2与-2相等即 可求出a的值.【解答】解:解不等式x- 2a>2,得:x>2a+2,解不等式3x+2>4x-1,得:x<3, . - 2<x< 3,.-2a+2=-2,解得:a= 2, 故选:B.次不等式组,知道不等式组解集的唯一性是解题的【点评】本题考查了解一元关键.11. (2.00分)如果/ a与/ B的两边分别平行,/ a比/ 0的3倍少40°,则/ a 的度数为()A. 200 B. 125. 20
17、°或 125° D. 35°或 110【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【解答】解:设/ B为x,贝U/ a为3x 40°,若两角互补,贝U x+3x- 40 =180°,解得 x=55 , / a =125;若两角相等,则x=3x- 40°,解得x=20°, / a =20:故选:C.【点评】本题考查平行线的性质,关键在于根据两角的两边分别平行打开此题的 突破口.12. (2.00分)已知关于x、y的方程组尸如为一: 其中3< a&l
18、t;1,给出下歹U -3 a说法:当a=1时,方程组的解也是方程x+y=2-a的解;当a=- 2时,x、y的值互为相反数;若x< 1,则1&y&4;(14是方程组的解.其中说法错 lv=-l误的是()A.B. C.D.【分析】根据题目中的方程组可以判断各个小题的结论是否成立,从而可以解答本题.【解答】解:当a=1时,工+3厂3x-j/=-3,x+y=0w2- 1,故错误,当a= - 2时,肝 3¥二6 x-v=6x=6 ,产。,则x+y=6,此时x与y不是互为相反数,故错误,.卜+3y=4FI t-y=-3&- 5廿2 H 二22+a y=-2. x&l
19、t; 1,则-5a+22<1,得 a>0,故错误,2+a<,即 102=4-a,解得,r 5升2I=2+ay=-22且= '.+.- 一 ., r-2 2 5故错误, 故选:A.【点评】本题考查解一元一次不等式组、二元一次方程(组)的解,解答本题的 关键是明确题意,找出所求问题需要的条件,利用方程和不等式的性质解答.二、填空题(本大题共6小题,每小题3分.共18分)13. (3.00分)如果x2=1,那么当工的俏是 土 1.【分析】利用平方根的定义求出x的值,代入所求式子中计算即可得到结果.【解答】解:.x2=1,x=± 1 ,贝*工=±1故答案为
20、:土 1.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.14. (3.00分)已知点M (a, b),且a?b>0, a+b<0,则点M在第 三 象限.【分析】由于a?b>0则a、b同号,而a+b<0,于是a<0, b<0,然后根据各象限点的坐标特点进行判断.【解答】解: a?b> 0,a、b同号= a+b<0,a< 0, b<0,点M (a, b)在第三象限.故答案为三.【点评】本题考查了坐标:直角坐标系中点与有序实数对一一对应;在 x轴上点 的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.1
21、5. (3.00 分)若是方程 x 2y=0 的解,则 3a- 6b 3= -3 .【分析】把x与y的值代入方程组求出a与b的关系,代入原式计算即可得到结 果.【解答】解:把尸九代入方程x-2y=0,可彳导:a- 2b=0, ly=b所以 3a-6b- 3=-3,故答案为:-316. (3.00分)方程组x+2y+z-0 ' 2.1-7-z=l h3x-y-z=2【点评】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未 知数的值.5t=l的解是,产-2Il s=3【分析】+得出3x+y=1,求x,把x=1代入求出y,把x=1, y=2代入求出z即可.%+2v+f0 【解答
22、】解:* 2直-y-工二13x-y-z=2®+得:3x+y=1,-得:x=1,把x=1代入得:3+y=1,解得:y=- 2,把 x=1, y=- 2 代入得:1 - 4+z=0,解得:z=3,¥二1所以原方程组的解为y=-2 ,r 7.-1故答案为:,y=-2 .L z=3【点评】本题考查了解三元一次方程组,能把三元一次方程转化成二元一次方程 组或一元一次方程是解此题的关键.17. (3.00分)如图,已知/ 1= (3x+24) °, /2= (5x+20) °,要使 mil n,那么 /1= 75(度).tnri【分析】直接利用邻补角的定义结合平行线
23、的性质得出答案.【解答】解:如图所示:/ 1+/ 3=180°,; m / n, /2=/ 3,. / 1+7 2=180°, .3x+24+5x+20=180°,解得:x=17,则 / 1= (3x+24) =75°.故答案为:75.盟IV I【点评】此题主要考查了平行线的判定与性质, 正确得出/ 1+/ 2=180°是解题关 键.18. (3.00 分)已知 x-y=3,且 x>2, y< 1, WJ x+y 的取佰范围是 1 <x+y<5 .【分析】利用不等式的性质解答即可.【解答】解:=xy=3,x=y+3,又
24、x> 2,y+3 >2,y> - 1.又.y<1,- 1<y< 1, 同理得:2<x<4, 由 + 得-1+2<y+x<1+4x+y的取值范围是1<x+y<5;故答案为:1<x+y<5.【点评】本题考查了一元一次不等式组的应用,关键是先根据已知条件用一个量 如y取表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的 不等式,从而确定该量y的取值范围,同法再确定另一未知量 x的取值范围.三、解答题(本大题共7小题,共58分.解答应写出文字说明、演算步骤或证明 过程)f3G-H)+2(y-l)=019.
25、 (7.00分)解方程组2什1二【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:/2片-1,14其+3元-2X 3-X 2得:x=1,把x=1代入得:y=- 2,则方程组的解为fx=1 .lv=-2【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代 入消元法与加减消元法.3k>4s-1 (1)5kT >"),请结合题意填空,完成本题的解答.(1)解不等式(1),得x0 1;(2)解不等式(2),得 x> - 1 ;(3)把不等式(1)和(2)的解集在数轴上表示出来:"32-1 01 23(4)原不等式组的解集为
26、-1<x01 .【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)解不等式(1),得:x< 1;(2)解不等式(2),得:x> - 1;(3)把不等式(1)和(2)的解集在数轴上表示出来: f51r(4)原不等式组的解集为-1<x0 1,故答案为:(1) x< 1; (2) x>-1; (4) - 1<x<1.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟 练掌握运算法则是解本题的关键.21. (8.00分)我市盘山、黄崖关长城、航母公园三景区是人们节假日游玩的热 点景区.某中学对七年级(
27、1)班学生今年暑假到这三景区游玩的计划做了全面 调查,调查分四个类别,A游三个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩.根据调查的结果绘制了不完全的条形统计图和扇形统计图(如图、图)如下,请根据图中所给的信息,解答下列问题:201510 5 0(1)求七年级(1)班学生人数;(2)将条形统计图补充完整;(3)求扇形统计图中表示“啖别”的圆心角的度数;(4)若该中学七年级有学生520人,求计划暑假选择 A B、C三个类别出去游 玩的学生有多少人?【分析】(1)根据统计图中的数据可以求得七年级(1)班的学生人数;(2)根据(1)中的结果和统计图中的数据可以求得选择 B的人数,从
28、而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得扇形统计图中表示“啖别”的圆心角的度数;(4)根据统计图中的数据可以求得计划暑假选择 A B、C三个类别出去游玩的学生有多少人.【解答】解:(1) 8+20%=40(人),即七年级(1)班有学生10人;(2)选择 B 的学生有:40-8- 5- 15=12 (A),补全的条形统计图如有右图所示;(3)扇形统计图中表示“啖别”的圆心角的度数是:360 x11=108°;40(4) 520X 4唱 5 =325 (人), 答:计划暑假选择A、B、C三个类别出去游玩的学生有325人.【点评】本题考查条形统计图、扇形统计图、用样本估
29、计总体,解答本题的关键 是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22. (8.00分)已知方程组俨俨"为中x为非正数,y为负数.x+y= -7-a(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解集为x<1.【分析】(1)先求出方程组的解,即可得出不等式组,求出不等式组的解集即可;(2)根据不等式的解集求出a的范围,即可得出答案.【解答】解:(1)解方程组1少"瑞得:产-3+社,-7-a y= -4 -2a二方程组式于1”力中x为非正数,y为负数,i-Fy= -7-3t -解得:-2<a03,即
30、a的取值范围是-2<a03;(2) 2ax+x>2a+1,(2a+1) x> 2a+1,;要使不等式2ax+x>2a+1的解集为x<1,必须 2a+1<0,解得:a< -0.5,V - 2<a<3, a为整数,-a=- 1,所以当a为-1时,不等式2ax+x>2a+1的解集为x< 1.【点评】本题考查了解二元一次方程组,解一元一次不等式或解一元一次不等式组等知识点,能求出a的取值范围是解此题的关键.120元的A、B两种型23. (10.00分)某电器超市销售每台进价分别为 160元、号的电风扇,如表是近两周的销售情况:销售时段销
31、售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共 50台, 求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为 x元、y元,根据3台A 型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900 元,列方程组求解;(2)设采购A
32、种型号电风扇a台,则采购B种型号电风扇(50-a)台,根据金 额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总 利润二一台的利润x总台数,列出不等式,求出 a的值,再根据a为整数,即可 得出答案.x元、y元,【解答】解:(1)设A、B两种型号电风扇的销售单价分别为依题意得:px+4y=1200|5x+6y=1900解得: 答:A、B两种型号电风扇的销售单价分别为 200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50-a)台.依题意得:160a+120 (30-a) < 7500,解得:a< 37.1.
33、2答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200- 160) a+ (150- 120) (50-a) >1850,解得:a>35,. a< 371,且a应为整数, 2.在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键 是读懂题意,设出未知数,找出合适的等量关系和不等关系, 列方程组和不等式 求解.24. (8.00分)如图,已知/ A=/ AGE, / D=/ DGC(1)试说明 AB/ CD;(2)若/1 + /2=180°,且/ BEC=2 B+60°,求/ C的度数.(2)利用平行线的判定定理推知 CE/ FB,然后由平行线的性质、等量代换推知 / C=/ BFD=/ B=50°.【解答】 证明:(1) V Z A=Z AGE, /D=/ DGG又. / AGE=Z DGC, / A=/ D, .AB/ CD;(2) /
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务费支付合同书范本2
- 建筑能源管理行业经营分析报告
- 牙科用印模托盘市场分析及投资价值研究报告
- 帽架产业链招商引资的调研报告
- 出租家具行业相关项目经营管理报告
- 位置定位服务电信服务行业市场调研分析报告
- 贵州省乌当区某校2024-2025学年高三上学期10月月考英语试题(解析版)
- 蚕种脱水机项目运营指导方案
- 光遗传学领域的研究行业营销策略方案
- 气动喷灯产品供应链分析
- 2.2--金风1.5兆瓦风力发电机组测量传感器与模块
- 零星用工单(派工单)
- 关于初中英语学习的调查问卷
- 慢性阻塞性肺疾病临床路径
- 可研收费标准[1999]1283号文
- 人身保险产品条款部分条目示范写法规定
- CT的基本结构和成像原理
- 《农村集体经济组织会计》考试试卷
- 《晴天》歌词精编版
- 防渗漏、防裂缝施工技术交底.doc
- 城市地下管线普查与实施方案(完整版)
评论
0/150
提交评论