![24.1第3课时 _弧、弦、圆心角 课件_第1页](http://file3.renrendoc.com/fileroot_temp3/2021-12/31/c07c9c05-9ba2-4ef5-b6dc-2e7ffff89380/c07c9c05-9ba2-4ef5-b6dc-2e7ffff893801.gif)
![24.1第3课时 _弧、弦、圆心角 课件_第2页](http://file3.renrendoc.com/fileroot_temp3/2021-12/31/c07c9c05-9ba2-4ef5-b6dc-2e7ffff89380/c07c9c05-9ba2-4ef5-b6dc-2e7ffff893802.gif)
![24.1第3课时 _弧、弦、圆心角 课件_第3页](http://file3.renrendoc.com/fileroot_temp3/2021-12/31/c07c9c05-9ba2-4ef5-b6dc-2e7ffff89380/c07c9c05-9ba2-4ef5-b6dc-2e7ffff893803.gif)
![24.1第3课时 _弧、弦、圆心角 课件_第4页](http://file3.renrendoc.com/fileroot_temp3/2021-12/31/c07c9c05-9ba2-4ef5-b6dc-2e7ffff89380/c07c9c05-9ba2-4ef5-b6dc-2e7ffff893804.gif)
![24.1第3课时 _弧、弦、圆心角 课件_第5页](http://file3.renrendoc.com/fileroot_temp3/2021-12/31/c07c9c05-9ba2-4ef5-b6dc-2e7ffff89380/c07c9c05-9ba2-4ef5-b6dc-2e7ffff893805.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆的有关性质(第圆的有关性质(第3课时)课时) 本节课是在学习了垂径定理后本节课是在学习了垂径定理后,进而学习进而学习圆的又一个重要性质圆的又一个重要性质,主要研究弧,弦,主要研究弧,弦,圆心角的关系圆心角的关系内容说内容说明明 学习目标:学习目标:1了解圆心角的概念;了解圆心角的概念;2掌握在同圆或等圆中,两个圆心角、两条弧、掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等应的其余各组量也相等 学习重点:学习重点:同圆或等圆中弧、弦、圆心角之间的关系同圆或等圆中弧、弦、圆心角之间的关系1思考思考圆是中
2、心对称图形吗?它的对称中心在哪里?圆是中心对称图形吗?它的对称中心在哪里?圆是中心对称图形,圆是中心对称图形,它的对称中心是圆心,它的对称中心是圆心,它具有旋转不变性它具有旋转不变性.N把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度15O2性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NO15N302性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NO30N602性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NO60Nn2
3、性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NOnN由此可以看出,由此可以看出,点点 N仍落在圆上仍落在圆上2性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NOnN性质:性质:把圆绕圆心旋转任意一个角度后,仍与原来把圆绕圆心旋转任意一个角度后,仍与原来的圆重合的圆重合2性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NOnN我们把顶点在圆心的角叫做我们把顶点在圆心的角叫做圆心角圆心角如如NON是是圆圆 O 的一个圆心角的一个圆心角2性质性质把圆心角等分成把圆
4、心角等分成 360 份,则每一份的圆心角是份,则每一份的圆心角是 1,同时整个圆也被分成了同时整个圆也被分成了 360 份份则每一份这样的弧叫做则每一份这样的弧叫做 1的弧的弧1的圆心角对着的圆心角对着 1的弧,的弧,1的弧对着的弧对着 1的圆心角的圆心角.n的圆心角对着的圆心角对着 n的弧,的弧,n的弧对着的弧对着 n的圆心角的圆心角.性质:性质:弧的度数和它所对圆弧的度数和它所对圆心角的度数相等心角的度数相等.这样,这样,1的弧的弧1n的弧的弧n2性质性质如图,将圆心角如图,将圆心角AOB 绕圆心绕圆心 O 旋转到旋转到A OB 的位置,你能发现哪些等量关系?为什么?的位置,你能发现哪些等
5、量关系?为什么?AOB=A OBABOBAAB= A B AB=A B3探究探究同样,还可以得到:同样,还可以得到:在同圆或等圆中,如果两条弧相在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角等,那么它们所对的圆心角_ , 所对的弦所对的弦_;在同圆或等圆中,如果两条弦相在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角等,那么它们所对的圆心角_,所对的弧所对的弧_这样,我们就得到下面的定理:这样,我们就得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等对的弦也相等 相等相等相等相等相等相等相等相等同圆或等圆同圆或等圆中,
6、两个圆心角、中,两个圆心角、两条弧、两条弦两条弧、两条弦中有一组量相等,中有一组量相等,它们所对应的其它们所对应的其余各组量也相等余各组量也相等4定理定理因为因为 AB=CD,所以,所以AOB=COD又因为又因为 AO=CO,BO=DO,所以所以AOB COD又因为又因为 OE 、OF 是是 AB 与与 CD 对应边上的高,对应边上的高,所以所以 OE=OFAOB=CODAB=CD如图,如图,AB、CD 是是 O 的两条弦:的两条弦:(1)如果)如果 AB=CD,那么,那么_,_;(2)如果)如果 = ,那么,那么_,_;(3)如果)如果AOB=COD,那么,那么_,_;(4)如果)如果 AB
7、=CD,OEAB 于于 E,OFCD 于于 F,OE 与与 OF 相等吗?为什么?相等吗?为什么?ABCDAB=CDAB=CDAOB=CODAB=CD相等相等ABCDEFO5巩固巩固AB=AC,ABC 等腰三角形等腰三角形又又ACB=60,ABC 是等边三角形,是等边三角形,AB=BC=CAAOB=BOC=AOC例例1如图,在如图,在 O 中,中, = ,ACB =60求证:求证:AOB=BOC=AOCABAC证明:证明: ABAC =ABCO6例题例题例例2 如图,如图,AB 是是 O 的直径,的直径, = = , COD=35,求,求AOE 的度数的度数AOBCDE解:解: CDBCDEBOC=COD=DOE =35AOE=180-335=75CDBCDE= =6例题例题例例3:如图,在:如图,在 O 中,弦中,弦 AB 所对的劣弧为圆的所对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年装卸机械项目立项申请报告模式
- 2025年上海高级商场物业管理续签合同协议
- 2025年胶片型相机、CCD相机、红外相机、恒星相机项目规划申请报告模板
- 2025年劳动合同法续约条件规定
- 优化农业产业供应链的合同范例2025年
- 2025年设备租赁展示合同范本
- 2025年公共交通广告安装服务协议
- 2025年上海技术顾问合同
- 2025年建筑项目材料采购申请及供销协议
- 2025年二手房产交易定金给付合同协议样本
- 2024年1月山西省高三年级适应性调研测试(一模)理科综合试卷(含答案)
- 2024年广东高考(新课标I卷)语文试题及参考答案
- XX卫生院关于落实国家组织药品集中采购使用检测和应急预案及培训记录
- 人教版八年级地理下册教材分析
- Part3-4 Unit4 Volunteer Work课件-【中职专用】高一英语精研课堂(高教版2021·基础模块2)
- 法律援助课件
- 双减政策之下老师如何打造高效课堂
- 新员工入职健康体检表
- 广东省特种作业操作证核发申请表
- 胸腔穿刺知情同意书
- 2020-2021学年人教版道德与法治八年级下册全册教材答案
评论
0/150
提交评论