




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、江苏省泰州市姜堰市2020 年中考数学一模试卷(解析版)一、选择题(本大题共有6 题,每小题3 分,共 18 分在每小题所给出的四个选项中只有一项是符合题目要求的)1 .姜堰冬天某日室内温度是5C,室外温度为-2C,则室内外温差为()A. - 3c B. - 7c C. 3c D. 7c2将一个正方体沿某些棱展开后,能够得到的平面图形是()A B C D3下列说法错误的是()A .必然事件的概率是 1B 如果某种游戏活动的中奖率为40% ,那么参加这种活动10 次必有 4 次中奖C. 了解一批灯泡的使用寿命适合用抽样调查D 数据1、2、 2、3 的平均数是24 .如图,all b, / 1=1
2、10°, / 3=40°,则/ 2 等于()A 40°B60°C70° D80°5 .将抛物线y=-x2向左平移1个单位,再向下平移2个单位,所得抛物线的函数关系式是 ()A y= - (x-1) 2-2 B. y= - (xT) 2+2 C. y= - (x+1) 2-2 D . y= - ( x+1) 2- 26 .在一次函数y= - x+m (m为正整数)的图象上取点P,彳PAx轴,PBy轴,垂足分别为 A、 B, 且矩形 OAPB 的面积为4, 若这样的P 点只有 2个, 则满足条件的m 的值有 ()个A 2 个B 3 个C
3、4 个D 5 个二、填空题(本大题共10 小题,每小题3 分,共 30 分,请把答案直接写在答题纸相应的位置上)7 .函数的自变量x的取值范围是 .8一个n 边形的内角和为1080°,则n=9 . 一组数据:2, - 3, 4, 2, 0的方差是.10 .命题 对顶角相等”的逆命题是 .11 .若 x+3y=0,则 2x?8y=.12 .菱形ABCD的边长为3m, / A=60 °,弧CD是以点B为圆心,BC长为半径的弧,弧 BD是以A为圆心,AB长为半径的弧,则阴影部分面积为 m2 (结果保留根号).13 .如图,将矩形 ABCD沿CE折叠,点B恰好落在边AD上的点F处,
4、如果,那么tan/ DCF=.14 .如图,O O的圆心在 RtAABC的斜边 AB上,且。分别与边 AC、BC相切于 D、E 两点,已知 AC=3 , BC=4 ,则。的半径r=.15 .如图,一次函数 y1=kx+b (kw0)的图象与反比例函数 y2=的图象交于 A (-2, 1)、 B (1, n)两点.若 y1>y2,则x的取值范围是 .16 .如图,正方形 ABCD的对角线相交于点 O,正方形OEFG的一边OG经过点D,且D 是OG的中点,OG=AB ,若正方形ABCD固定,将正方形 OEFG绕O点逆时针旋转 口角, (0°< “V360°)得到正方
5、形 OEFG',当 炉 度时,/ OAG =90°.三、计算题17 . (12分)(2020?泰州一模) /)7-夜一 3)。(冗-3.14)“一血切§45 解方程:.18 .先化简,再求值.?,其中x=2-.19 .某居民小区共有 300户家庭,有关部门对该小区的自来水管网系统进行改进,为此需了解该小区自来水用水量的情况,该部门通过随机抽样,调查了其中20户家庭,统计了这 20户家庭的月用水量,见如表:月用水量(m3) 467121415户数246224( 1)这个问题中样本是,样本容量是;( 2)计算这20 户家庭的平均月用水量;( 3)根据上述数据,估计该小区
6、300 户家庭的月总用水量20 一个不透明的袋中装有5 个黄球, 13 个黑球和22 个红球, 这些球除颜色外其它都相同( 1)求从袋中摸出一个球是黄球的概率为;( 2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问至少取出多少个黑球?21 (10 分)(2020?泰州一模)某学习小组的同学准备去文具店购买笔记本和钢笔,如果买 2 本笔记本和1 支钢笔共需7 元,买 3 本笔记本和2 支钢笔共需12 元( 1)求一本笔记本和一支钢笔的价格;( 2)若小明买笔记本和钢笔共花去14 元 (至少买1 本笔记本和1 支钢笔), 则小明买了多少本笔记
7、本和多少支钢笔?22. ( 10分)(2020?泰州一模)如图,直线 y=- x+2交x轴于A点,交y轴于B点,C、 D 分别为 OA、 OB 的中点,连接AD 、 BC 相交于 E 点( 1)求证:BE=2EC ;( 2)求E 点坐标23. (10分)(2020?泰州一模)已知 CD为RtAABC斜边AB上的高,以 CD为直径的圆交 BC 于 E 点,交 AC 于 F 点, G 为 BD 的中点(1)求证:GE为。的切线;(2)若 tanB=, GE=5,求 AD 的长.24. (10分)( 2020?泰州一模)如图,已知斜坡 AP的坡度为i=1:,坡长AP为20m,与 坡顶A处在同-水平面
8、上有-座古塔 BC,在斜坡底P处测得该塔的塔顶 B的仰角为45。, 在坡顶A处测得该塔的塔顶 B的仰角“且tana=3.求:( 1)求坡顶A 到地面 PQ 的距离;( 2)古塔BC 的高度(结果保留根号)25. (12分)(2020?泰州一模)已知 ABC为边长为6的等边三角形,D、E分别在边 BC、 AC 上,且 CD=CE=x ,连接DE并延长至点 F,使EF=AE ,连接AF、CF.(1)求证: AEF为等边三角形;( 2)求证:四边形ABDF 是平行四边形;(3)记 CEF的面积为S, 求 S 与 x 的函数关系式; 当 S 有最大值时,判断CF 与 BC 的位置关系,并说明理由26.
9、 (14分)(2020?泰州一模)已知二次函数 y=mx2+nx+1经过点A ( - 1, 0).( 1)若该二次函数图象与x 轴只有一个交点,求此时二次函数的解析式;(2)若该二次函数y=mx2+nx+1图象与x轴有两个交点,另一个交点为B,与y轴交点为C.且Sa abc=1 ,求 n 的值;(3)若x=1时,y>2,试判断该抛物线在 0vxv1之间的部分与x轴是否有公共点?若有,求出公共点的坐标,若没有,请说明理由2020 年江苏省泰州市姜堰市中考数学一模试卷参考答案与试题解析一、选择题(本大题共有6 题,每小题3 分,共 18 分在每小题所给出的四个选项中只有一项是符合题目要求的)
10、1 .姜堰冬天某日室内温度是 5C,室外温度为-2C,则室内外温差为()A. - 3c B. - 7c C. 3c D. 7c【考点】有理数的减法【分析】根据有理数的减法,即可解答【解答】 解:5- (-2) =5+2=7 (C),故选: D【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则2将一个正方体沿某些棱展开后,能够得到的平面图形是()ABC D【考点】几何体的展开图【分析】由平面图形的折叠及正方体的展开图解题【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、B、上底面不可能有两个,故不是正方体的展开图;D 、出现了田字格,故不能;C、可以拼成一个正方体.故选
11、C【点评】 本题考查几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形3下列说法错误的是()A .必然事件的概率是 1B 如果某种游戏活动的中奖率为40% ,那么参加这种活动10 次必有 4 次中奖C. 了解一批灯泡的使用寿命适合用抽样调查D 数据1、 2、 2、 3 的平均数是2【考点】概率的意义;全面调查与抽样调查;算术平均数;随机事件【分析】 分别利用概率的意义以及抽样调查的意义以及平均数求法和必然事件的定义分别分 析得出答案【解答】 解:A、必然事件的概率是 1,正确,不合题意;B 、如果某种游戏活动的中奖率为40% ,那么参加这种活动10 次必有 4 次中奖,错误,符合
12、题意;C、了解一批灯泡的使用寿命适合用抽样调查,正确,不合题意;D 、数据 1、 2、 2、 3 的平均数是2,正确,不合题意;故选:B【点评】此题主要考查了概率的意义以及抽样调查的意义以及平均数求法和必然事件的定义,正确把握相关性质是解题关键4.如图,all b, / 1=110°, / 3=40°,则/ 2 等于()A 40° B 60° C 70° D 80°【考点】平行线的性质【分析】先根据平行线的性质求出/4的度数,再由对顶角相等得出/2+/4的度数,进而可得出结论【解答】 解:: all b, / 3=40°,
13、/ 4=/3=40 °. / 1 = 72+74=110°, / 2=110 - Z 4=110 - 40 =70 °.故选C【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等5 .将抛物线y=-x2向左平移1个单位,再向下平移2个单位,所得抛物线的函数关系式是 ()A y= - (x 1)2-2 B. y= - (x-1) 2+2 C. y= - (x+1) 2-2 D. y= - (x+1) 2-2【考点】二次函数图象与几何变换【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式【解答】解:原抛物线的顶点为
14、(0, 0),向左平移1 个单位,再向下平移2 个单位,那么新抛物线的顶点为(-1, - 2);可设新抛物线的解析式为y= - (x-h) 2+k代入得:y= - (x+1) 2-2.故选:C【点评】本题考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标6 .在一次函数y= - x+m ( m为正整数)的图象上取点P, P PA,x轴,PB,y轴,垂足分别为A、 B, 且矩形OAPB 的面积为4, 若这样的P 点只有 2个, 则满足条件的m 的值有 ()个A 2个 B 3个C 4个D 5个【考点】矩形的性质;一次函数图象上点的坐标特征【分析】
15、设点P的坐标为(x, y),由图象得| x| y|=4,再将y= - x+m代入,即可得出关 于x的一元二次方程,根据一元二次方程的判别式和点P的个数即可判断x2-mx+4=0没有实数根,根据根的判别式即可求得【解答】解:设点P的坐标为(x, y),由图象得| x| y| =4,再将y=-x+m代入,得x (- x+m) =± 4,贝U x2 - mx+4=0 或 x2- mx - 4=0这样的P点有2个,且x2- mx - 4=0有两个不相等的实数根方程x2- mx+4=0没有实数根,(-m) 2- 4X 1 X 4v 0解得:m2< 16, m为正整数,m=1 , 2, 3
16、;即满足条件的m 的值有 3 个故选:B根的判别式;熟知一次函数图象上各【点评】本题考查的是一次函数图象上点的坐标特点, 点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(本大题共 10小题,每小题3分,共30分,请把答案直接写在答题纸相应的位置上)7 .函数的自变量 x的取值范围是 XR3 .【考点】函数自变量的取值范围.【分析】根据被开方数非负列式求解即可.【解答】解:根据题意得,x-3> 0,解得x> 3.故答案为:x>3.【点评】 本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑
17、分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8 . 一个n边形的内角和为 1080°,则n= 8 .【考点】多边形内角与外角.【分析】 直接根据内角和公式(n-2) ?180。计算即可求解.【解答】 解:(n - 2) ?180°=1080°,解得n=8.【点评】 主要考查了多边形的内角和公式.多边形内角和公式:(n-2) ?180°.9 . 一组数据:2, - 3, 4, 2, 0的方差是.【考点】方差.【分析】计算出数据的平均数后,再根据方差的公式计算.【解答】 解:平均数=(2-3+4+2+0) +5=1,所以方差=:一- I
18、 i L . 2 - 1- 1 - J-.二 | 5故答案为:.【点评】本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10 .命题 对顶角相等”的逆命题是 相等的角为对顶角.【考点】命题与定理.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题对顶角相等”的逆命题是相等的角为对顶角故答案为相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果那么'形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查
19、了逆命题.11 .若 x+3y=0,则 2x?8y= 1.【考点】同底数哥的乘法.【分析】先将8变形为23的形式,然后再依据哥的乘方公式可知8y=23y,接下来再依据同底数哥的乘法计算,最后将 x+3y=0代入计算即可.【解答】解:2x?8y=2x?23y=2x+3y=20=1.故答案为1.【点评】本题主要考查的是同底数哥的乘法、哥的乘方、零指数哥的性质,熟练掌握相关知识是解题的关键.12 .菱形ABCD的边长为3m, / A=60 °,弧CD是以点B为圆心,BC长为半径的弧,弧BD是以A为圆心,AB长为半径的弧,则阴影部分面积为 m2 (结果保留根号).【考点】扇形面积的计算;菱形
20、的性质.【分析】 连接BD,判断出 ABD是等边三角形,根据等边三角形的性质可得/ABD=60。:再求出/ CBD=60 °,然后求出阴影部分的面积 =S/xabd,计算即可得解.【解答】 解:连接BD,过D作DELAB于E, 四边形ABCD是菱形,AD=BC=CD=AD=3 . / A=60 °,ABD是等边三角形, ./ ABD=60 °,又.菱形的对边 AD/BC, ./ ABC=180 °-60 =120 °, ./ CBD=120 °-60 =60o, S 阴影=S 扇形 CBD 一 ( S 扇形 BAD S/XABD),=
21、Saabd,=x 3X,2 =m .故答案为:.【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角 形是解题的关键.13.如图,将矩形 ABCD沿CE折叠,点B恰好落在边AD上的点F处,如果,那么tan/ DCF=.【考点】翻折变换(折叠问题).【分析】设AB=3入,则BC=4 N首先证明CF=CB=4入;运用勾股定理求出 DF的长,即可解 决问题.【解答】 解:如图,设 AB=3入贝U BC=4 X 四边形ABCD为矩形, . DC=AB=3 入 / D=90 °;由题意得:CF=CB=4 N由勾股定理得:DF2=CF2- CD2,解得:DF=
22、9; . tan / DCF=,故答案为.【点评】本题考查了翻折变换的性质、勾股定理,牢固掌握翻折变换的性质、勾股定理是基础,灵活运用是关键.14.如图,O O的圆心在 RtAABC的斜边AB上,且。分别与边 AC、BC相切于D、E两点,已知 AC=3, BC=4,则。的半径r= .【考点】切线的性质.【分析】连结OD、OE,如图,根据切线的性质得/ ODC=/OEC=90°,再证明四边形 OECD 为正方形得到 CE=r,然后证明 BOEsbac,利用相似比得到r: 3= (4-r) : 4,再利 用比例性质求r即可.【解答】解:连结OD、OE,如图, 。分别与边AC、BC相切于D
23、、E两点,.-.ODXAC , OEXBC, ./ ODC= ZOEC=90 °,而/ C=90 °, 四边形OECD为矩形,而 OE=OD ,,四边形OECD为正方形,.CE=r,BE=BC - CE=4 - r, OE / AC , . BOEc/dA bac ,.OE: AC=BE : BC,即 r: 3= (4-r) : 4, r=.故答案为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连CE=r.过切点的半径,构造定理图,得出垂直关系.解决本题的关键是证明15.如图,一次函数 yi=kx+b (kw0)的图象与反比例函数 y2=的
24、图象交于 A ( - 2, 1)、B (1, n)两点.若 yi >y2,则x的取值范围是xv - 2或0vxv 1 .【考点】反比例函数与一次函数的交点问题.【分析】结合函数图象特征,即可得知当当xv-2或0vxv1时,y1>y2,由此得出结论.【解答】解:结合一次函数图象与反比例函数图象可知:当xv - 2或0vxv1时,一次函数图象在反比例函数图象上方.故答案为:xv-2或0vxv1.【点评】 本题考查了反比例函数与一次函数的交点问题,解题的关键是明白y1>y2代表着一次函数图象在反比例函数图象上方.本题属于基础题,难度不大,解决该题型题目时,结合两函数的交点横坐标解决
25、问题是关键.16.如图,正方形 ABCD的对角线相交于点 O,正方形OEFG的一边OG经过点D,且D 是OG的中点,OG=AB ,若正方形ABCD固定,将正方形 OEFG绕O点逆时针旋转 口角, (0°< “V360°)得到正方形 OEFG;当 炉 30 或 150 度时,/ OAG =90°.【考点】旋转的性质;正方形的性质.【分析】 根据题意和锐角正弦的概念以及特殊角的三角函数值得到/AG 0=30。,分两种情况求出a的度数.【解答】解:当a为锐角时,如图1所示:四边形ABCD是正方形,BC=AB , / ABC=90 °, OA=OD=AC
26、,AC=AB , OG=AB , .0G'=0G=AC=2A0 , ./OAG =90°, OA=OG ./ AG 0=30 °, ./ AOG =60 °, ./ DOG =90°- 60 =30°, 即 0=30 °当旋转到如图2所示位置,同理证得/ AG 0=30°, ./ A0G =60 °, a=90 +60 =150 °,综上所述:”的度数为30。或150。,故答案为:30。或150【点评】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相
27、等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.三、计算题17 . (12 分)(2020?泰州一模) *)T - 了+ - 3. 14)0 - V2cos45 解方程:.【考点】解分式方程;实数的运算.【分析】原式利用零指数备、负整数指数哥法则,二次根式性质,以及特殊角的三角函 数值计算即可得到结果;分式方程去分母转化为整式方程,求出整式方程的解得到 x的值,经检验即可得到分式 方程的解.【解答】解:原式=2-3+1-1 = - 1;去分母得:x- 4= - x+2,移项合并得:2x=6,解得:x=3 ,检验:当 x=3 时,x-2=1w0,则x=3是原方程的解.【点评】此题考
28、查了解分式方程,利用了转化的思想,解分式方程注意要检验.18 .先化简,再求值.?,其中x=2-.【考点】分式的化简求值.【分析】先根据x的值判断出X-2的符号,再由分式混合运算的法则把原式进行化简,把x的值代入进行计算即可.【解答】B: x=2 -,x- 2= - < 0原式=?-=+二,当x=2 时,原式=-.【点评】本题考查的是分式的化简求值,先根据题意判断出 x-2的符号是解答此题的关键.19 .某居民小区共有 300户家庭,有关部门对该小区的自来水管网系统进行改进,为此需了解该小区自来水用水量的情况,该部门通过随机抽样,调查了其中20户家庭,统计了这 20户家庭的月用水量,见如
29、表:月用水量(m3) 467121415户数246224(1)这个问题中样本是其中20户家庭自来水用水量,样本容量是20 ;(2)计算这20户家庭的平均月用水量;(3)根据上述数据,估计该小区300户家庭的月总用水量.【考点】用样本估计总体;加权平均数.【分析】(1)根据样本和样本容量的定义回答即可;(2)用加权平均数的计算公式计算即可.(3)用样本平均数估计总体平均数.【解答】 解:(1)样本是其中20户家庭自来水用水量;样本容量是20;故答案为:其中20户家庭自来水用水量,20.(2)平均用水量为:(4X2+6X4+7X6+12X2+14X2+15X4) 一一 一一 一 一 一 一、 一一
30、 3=(8+24+42+24+28+60) =9.3m3;(3)估计该小区300户家庭的月总用水量为:300X 9.3=2790m3.【点评】考查了用样本估计总体,加权平均数的定义等知识,生活中常遇到的估算问题,通常采用样本估计总体的方法.20 .一个不透明的袋中装有 5个黄球,13个黑球和22个红球,这些球除颜色外其它都相同.(1)求从袋中摸出一个球是黄球的概率为 ;(2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问至少取出多少个黑球?【考点】概率公式.【分析】(1)先求出总球的个数,再根据概率公式即可得出答案;(2)设取x只黑球,根据
31、题意列出不等式,求出x的值即可得出答案.【解答】 解:(1).共有5+13+22=40个球,从袋中摸出一个球是黄球的概率为二;故答案为:;(2)设取x只黑球,则斗x+5>,x>,x为整数,,x至少为9,答:至少取9只黑球.【点评】 本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.21 . (10分)( 2020?泰州一模)某学习小组的同学准备去文具店购买笔记本和钢笔,如果买2本笔记本和1支钢笔共需7元,买3本笔记本和2支钢笔共需12元.(1)求一本笔记本和一支钢笔的价格;(2)若小明买笔记本和钢笔共花去14元(至少买1本笔记本和1支钢笔),则小明买了多少本笔记
32、本和多少支钢笔?【考点】 二元一次方程组的应用;二元一次方程的应用.【分析】(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语实2本笔记本和1支钢笔共需7元,买3本笔记本和2支钢笔共需12元”,列方程组求出未知 数的值,即可得解.(2)设购买钢笔的数量和笔记本的数量,根据小明买笔记本和钢笔共花去14元(至少买1本笔记本和1支钢笔),列出不等式解答即可.( 1)解:设一本笔记本x 元,一支钢笔y 元解之得:答:一本笔记本2 元,一支钢笔3 元;(2) 设买了 m本笔记本,n支钢笔2m+3n=14,/. m=7 1.5n,共二种方案,答:小明买了4 本笔记本,2 支钢笔或1 本
33、笔记本,4 支钢笔【点评】此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式22 . ( 10分)(2020?泰州一模)如图,直线 y=- x+2交x轴于A点,交y轴于B点,C、D 分别为 OA、 OB 的中点,连接AD 、 BC 相交于 E 点( 1)求证:BE=2EC ;( 2)求E 点坐标【考点】相似三角形的判定与性质;一次函数图象上点的坐标特征【分析】(1)连接DC,根据中位线定理可得 CD/AB,根据相似三角形的判定和性质即可求解;( 2)根据待定系数法求出AD 、 BC 的函数解析式,联立方程组可求E 点坐标【解答】( 1)证明
34、:连接DC, C、D分别为OA、OB的中点; . CD / AB , CD=AB , . / CDE= / BAE , / DEC= / BEA , . DECA AEB ,二,BE=2EC ;(2)二.当 x=0 时,y=- X 0+2=2,当 y=0 时,0=x+2=2,解得 x=4,B ( 0, 2), A( 4, 0)C、 D 分别为 OA、 OB 的中点,D (0, 1) , C (2, 0),设AD的解析式为y=kx+b,则,解得故AD的解析式为y= - x+1 ;设BC的解析式为y=mx+n,则,解得故BC的解析式为y= - x+2.联立两解析式可得,解得故 E 的坐标为(,)【
35、点评】本题考查了相似三角形的判定与性质,一次函数图象上点的坐标特,涉及待定系数法求函数解析式、解方程组等,是一道考查综合能力的题目23. (10分)(2020?泰州一模)已知 CD为RtAABC斜边AB上的高,以 CD为直径的圆交 BC 于 E 点,交 AC 于 F 点, G 为 BD 的中点(1)求证:GE为。的切线;(2)若 tanB=, GE=5,求 AD 的长.【考点】切线的判定【分析】(1)连DE、OE,利用圆周角定理可得/ CED= ZBED=90 °,因为G为BD的中点, 由直角三角形的性质可得 GE=GD,再由OE=OD,易得/ OED= / ODE,可得/ GEO=
36、 / GDO , 由CDXAB ,可得/ GEO=ZGDO=90 °,可得结论;(2)首先由垂直的定义易得/ B=/ACD,利用锐角三角函数可得 tanB=tan / DCA=,易得 BD=4AD ,可得结果【解答】( 1)证明:连DE、 OE,CD为。O的直径,CED= /BED=90 °,. G为BD的中点, . GE=GD , . GED= / GDE ,OE=OD , ./ OED= / ODE, ./ GEO= /GDO,.CD LAB , ./ GEO= Z GDO=90 °, .GE为。O的切线; CD LAB , ./ ACD=90 - Z A,
37、. / BCA=90 °, ./ B=90 -ZA, ./ B= Z ACD ,/ tanB=tan / DCA=,BD=4AD ,EG=5,BD=10 , AD=.【点评】本题主要考查了切线的判定及锐角三角函数等,作出恰当的辅助线是解答此题的关键.24. (10分)( 2020?泰州一模)如图,已知斜坡 AP的坡度为i=1:,坡长AP为20m,与坡顶A处在同-水平面上有-座古塔BC,在斜坡底P处测得该塔的塔顶 B的仰角为45。,在坡顶A处测得该塔的塔顶 B的仰角“且tana=3.求:(1)求坡顶A到地面PQ的距离;(2)古塔BC的高度(结果保留根号)【考点】解直角三角形的应用-仰角
38、俯角问题;解直角三角形的应用-坡度坡角问题【分析】(1)作AEPQ于点E,设AE为xm,根据坡度的概念用 x表示出PE,根据题意列出方程,解方程即可;(2)延长BC交PQ于点F,设AC=ym ,根据正切的定义表示出BC,根据直角三角形的性质得到BF=PF,列出方程,解方程即可.【解答】 解:(1)作AELPQ于点E,斜坡AP的坡度为i=1 :,=,设AE为xm,则PE为xm ,由勾股定理得,AP=2x ,由题意得2x=20,解得,x=10,则 AE=10m, PE=10m,答:坡顶A 到地面PQ 的距离为10m;( 2)延长BC 交 PQ 于点 F,设 AC=ym ,. tan a=3,BC=
39、3y , . / BPF=45 °, .PF=BF , .10+y=3y+10,解得y=5 5,贝U BC=3y=15 - 15.答:古塔BC的高度为(15-15) m.【点评】本题考查的是解直角三角形的应用-坡度坡角问题、仰角俯角问题,掌握坡度是坡面的铅直高度h 和水平宽度l 的比、 理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键25. (12分)(2020?泰州一模)已知 ABC为边长为6的等边三角形,D、E分别在边BC、 AC 上,且 CD=CE=x ,连接DE并延长至点F,使EF=AE ,连接AF、CF.(1)求证: AEF为等边三角形;( 2)求证:四边形ABDF
40、是平行四边形;(3)记 CEF的面积为S, 求 S 与 x 的函数关系式; 当 S 有最大值时,判断CF 与 BC 的位置关系,并说明理由【考点】四边形综合题【分析】(1)根据等边三角形的性质得到AB=AC=BC , ZACB=60 °,根据对顶角相等和等边三角形的判定定理证明即可;( 2)根据两组对边分别平行的四边形是平行四边形证明即可;(3) 根据等边三角形的性质分别求出SCDF和 SaCDE,计算求出S与x的函数关系式; 根据二次函数的性质求出S 有最大值时x 的值,根据垂直的定义判断即可【解答】(1)证明:. ABC为等边三角形, . AB=AC=BC , / ACB=60
41、°, CD=CE ,. .CDE为等边三角形, ./ CED=60 °,/ AEF=60 °,又 AE=EF ,. .AEF为等边三角形;(2) . / FAC=60 °, ./ FAC= Z ACB=60 °,AF / BC , . / CED= Z CAB=60 °, .AB / BF, 四边形ABDF为平行四边形;(3)作 AH,BC 于 H ,. ABC为边长为6的等边三角形,AH=3 ,0 cdf=XCDXAH=x , CDE为等边三角形,CD=x ,SA CDE=X2,. CEF 的面积 S=x-x2; CFXBC.x=-=3时,S最大, . CD=CE=3 , cde为等边三角形, . DE=CD=CE=3 ,E为AC的中点,AE=CE=3 . AE=EF=3 . CE=DE=EF=3 , . / CDE= / ECD,/ ECF=Z EFC, . / CDE + ZECD + ZCCF+Z EFC=180 °, .2/ ECD+2/ ECF=180 °, ./ ECD + Z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无锡江苏无锡市惠山区人民法院招聘编外人员3人笔试历年参考题库附带答案详解
- 全国青岛版信息技术七年级上册专题一第3课二、《常见信息安全问题与防护措施》教学设计
- 2025至2030年PTFE推(挤)压管紧衬直管项目投资价值分析报告
- Unit 8 Reading(1)教学设计2024-2025学年牛津译林版九年级英语上册
- 2025至2030年中国小功率充磁/退磁机数据监测研究报告
- 2025至2030年中国饼点叉数据监测研究报告
- 2025至2030年中国防爆除湿机数据监测研究报告
- 总价合同的施工合同范本
- 16 麻雀(教学设计)2024-2025学年-统编版语文四年级上册
- 16 夏天里的成长 教学设计-2024-2025学年统编版语文六年级上册
- 急诊科护理带教经验
- 涉警舆情培训课件模板
- 2024年郑州信息科技职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 学校保密教育培训课件
- 班组文化是企业文化建设的核心
- Project-培训教学课件
- 福建省服务区标准化设计指南
- 销售人员薪酬设计实例 薪酬制度设计 薪酬设计方案 设计案例全套
- 征地搬迁基本要求及工作技巧课件
- 部编版语文五年级下册 课本解读
- 供应商现场审核评估表
评论
0/150
提交评论