常用材料微观测试方法_第1页
常用材料微观测试方法_第2页
常用材料微观测试方法_第3页
常用材料微观测试方法_第4页
常用材料微观测试方法_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、XRDXRD 即X-ray diffraction 的缩写,X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。射线介绍X射线是一种波长很短(约为200.06埃)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。工作原理X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的粒子(原子、离子或分子)所产生的相干散射将

2、会发生光的干涉作用,从而使得散射的X射线的强度增强或布拉格衍射示意图减弱。由于大量粒子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。满足衍射条件,可应用布拉格公式:2dsin=n应用已知波长的X射线来测量角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。样品制备通常定量分析的样品细度应在45微米左右,即应过325目筛。常用软件有Pcpdgwin,Search match,High score和Jade,比较常用的是后两种。High score(1)可以调用的数据格式更多。(2)窗

3、口设置更人性化,用户可以自己选择。(3)谱线位置的显示方式,可以让你更直接地看到检索的情况(4)手动加峰或减峰更加方便。(5)可以对衍射图进行平滑等操作,使图更漂亮。(6)可以更改原始数据的步长、起始角度等参数。(7)可以进行0点的校正。(8)可以对峰的外形进行校正。(9)可以进行半定量分析。(10) 物相检索更加方便,检索方式更多。(11)可以编写批处理命令,对于同一系列的衍射图,一键搞定。Jade和Highscore相比自动检索功能少差,但它有比之更多的功能。(1)它可以进行衍射峰的指标化。(2)进行晶格参数的计算。(3)根据标样对晶格参数进行校正。(4)轻松计算峰的面积、质心。(5)出图

4、更加方便,你可以在图上进行更加随意的编辑。此外,还有Pcpdgwin和searc定律由来考虑到X射线的波长和晶体内部原子间的距离(0.3-几nm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射图样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基

5、础的著名公式布拉格定律:2d sin=n式中为X射线的波长,n为任何正整数,又称衍射级数。其上限为以下条件来表示:nmax=2dh0k0l0/,dh0k0l0/2只有那些间距大于波长一半的面族才可能给出衍射,以此求纳米粒子的形貌。定律的条件当X射线以掠角(入射角的余角)入射到某一点阵平面间距为d的原子面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一角符合布拉格条件的反射面得到反射,测出后,利用布拉格公式即可确定点

6、阵平面间距、晶胞大小和类型;根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(DebyeScherrer)法的理论基础。而在测定单晶取向的劳厄法中,所用单晶样品保持固定不变动(即不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。人体吸收人体哪些部位吸收X射线多人体组织结构的密度可归纳为三类:属于高密度的有骨组织和钙化灶等;中等密度的有软骨、肌肉等;低密度的有脂肪组织以

7、及存在于呼吸道、胃肠道、鼻窦和乳突内的气体等。人体组织结构和器官形态不同,厚度也不一致。其厚与薄的部分,或分界明确,或逐渐移行。厚的部分,吸收X线多,透过的X线少,薄的部分则相反。人体各部位细胞对X射的反应程度不一,其中以性腺最为敏感。辐射能够引起生殖细胞遗传物质的变化,形成遗传效应。这种变化表现为基因突变和染色体畸变。近年来,对辐射的遗传效应有了一些新的认识,认为在小剂量范围内对遗传方面的影响不大。防护措施技术方面:可以采取屏蔽防护和距离防护原则。屏蔽防护是指使用原子序数较高的物质,常用铅或含铅的物质,作为屏障以吸收不必要的x线。距离防护是指利用x线曝射量与距离平方成反比这一原理,通过增加x

8、线源与人体间距离以减少曝射量。简单说来,在X线环境中要注意穿戴铅围裙、铅围脖、铅帽、铅眼镜、铅手套、铅面罩及性腺防护等,并利用距离防护原则,加强自我防护。其他辐射及防护除了X线辐射外,在人们生活中还有类似的辐射,比如电脑、电视、手机、微波炉离人体都很近,所以危害也比较重,现在家庭装修通常会买一些地砖、文化石等,这些装修材料也会产生一定的辐射,地砖的辐射主要是来自于氡的放射性,氡射气是电离辐射,这种电离辐射作用在机体分子里面可以把有机分子正负电荷给拉开,然后就会产生不可恢复的器质性病变。如何防护这些辐射呢?应该说,只要注意了时间和距离的问题,使用微波炉一般是不会对人体造成损害的。比如打开微波炉后

9、尽量离开,保持距离以达到防护作用,还可以在微波炉上加上微波炉专用罩。电脑屏幕、主机、机箱、甚至连鼠标都有辐射,当然最主要的辐射是来自于屏幕,通常做好屏幕的防辐射工作就可以了。可以给电脑加上防辐射屏。孕妇要远离辐射源。实际应用应用价值光的衍射X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明、和铁都是体心立方结构,-Fe并不是一种新相;而铁中的转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研

10、究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。应用现状目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。精密测定

11、点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。宏观应力的测定

12、 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。特殊状态下的分析 在高温、低温和瞬时的动态分析。此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研

13、究近完整晶体中的缺陷如位错线等,也得到了重视。物相分析对于组成元素未知的单组份化合物或者多组分混合物,直接用XRD进行物相分析是存在一定问题的,由于同组的元素具有相似的性质和晶体结构。造成在同位置出现衍射峰,从而不能确定物相。所以对于未知组成的晶态化合物首先要进行元素的定性分析。新发展金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随

14、着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.X射线是波长介于紫外线和射线间的电磁辐射。X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用

15、钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料)。用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出。电子轰击靶极时会产生高温,故靶极必须用水冷却。XRDX-射线衍射(Wide Angle X-ray Diffraction)主要是对照标准谱图分析纳米粒子的组成,分析粒径,结晶度等。应用时应先对所制样品的成分进行确认。在确定后,查阅相关手册标准图谱,以确定所制样品是否为所得。数据库劳埃利用连续X射线照射硫酸铜单晶体获得衍射斑点图就是第一个用于晶体研究的例子,劳埃同时推导劳埃的衍射方程研究晶体结构。从那以后布拉格父子等一批物理学家和化学家利用X射线衍射研究了许多无机物晶体结

16、构;上世纪20年代开展了有机物晶体结构的测定工作,30年代开始利用X射线对胃蛋白酶、胰岛素等蛋白质和生物物质晶体结构进行研究。至今经过许多科学工作者的努力,积累了大量的晶体结构数据,现在已经有20多万种,并在国际上建立了五种主要的晶体学数据库。(1)剑桥结构数据库(The Cambrige Structural Database,CSD)。它有近16万种X射线或中子衍射测定的三维晶体结构数据(统计到1997年)。该数据库收集含碳化合物(包括有机物、有机金属化合物及无机含碳化合物,如碳酸盐等)的结构数据。有多种检索方法如:化合物名称、作者姓名、某些原子基团、整个分子或部分化学结构等。(2)蛋白质

17、数据库(The Protein Data Bank,PDB)。该库开始建立于1971年,建立在美国Brookhaven国家实验室。现已有4300多个生物大分子的三维结构数据(统计到1996年中)。数据库中对每个蛋白质晶体列出下列内容:收集的衍射数目、修正方法、偏差数值、已测定水分子位置的数目、蛋白质分子中氨基酸连接次序、螺旋、折叠层及转弯的分析、原子坐标参数,以及和蛋白质结合的金属原子、底物及抑制剂等的坐标参数等。(3)无机晶体结构数据库(The Inorganic Crystal Structural Database),建立在德国,约3万多个无机化合物的结构(不含CC和CH键的化合物)。(

18、4)NRCC金属晶体学数据文件(The National Research Council of Canada Crystallographic Data File,NRCC)。该建立在加拿大,约为1.1万个金属合金、金属间物相及部分金属氢化物和氧化物。(5)粉末衍射数据文件(The Powder Diffraction File)。该库建立在美国,汇集有6.7万种单相物质的粉晶衍射资料(统计到1997年) ,称为国际衍射数据中心的粉晶数据库(JCPDS-ICDD)。储存各化合物的晶面间距dhkl和相对强度、晶胞、空间群和密度等数据,主要用于物质的鉴定。SEM扫描电子显微镜(SEM)是1965

19、年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。简介扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;试样制备简单。 目前的扫描电镜都配有X射

20、线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器发展历史* 1873 Abbe 和Helmholfz 分别提出解像力与照射光的波长成反比。奠定了显微镜的理论基础。1897 J.J. Thmson 发现电子1924 Louis de Broglie (1929 年诺贝尔物理奖得主) 提出电子本身具有波动的物理特性, 进一步提供电子显微镜的理论基础。* 1926 Busch 发现电子可像光线经过玻璃透镜偏折一般, 由电磁场的改变而偏折。1931德国物理学家Knoll 及Ruska 首先发展出穿透式电子显微镜原型机。1937 首部商业原型机制造成功(

21、Metropolitan Vickers 牌)。* 1938 第一部扫描电子显微镜由Von Ardenne 发展成功。193839 穿透式电子显微镜正式上市(西门子公司,50KV100KV,解像力2030Å;)。194041 RCA 公司推出美国第一部穿透式电子显微镜(解像力50 nm)。*194163 解像力提升至23 Å (穿透式) 及100Å (扫描式)1960 Everhart and Thornley 发明二次电子侦测器。1965 第一部商用SEM出现(Cambridge)1966 JEOL 发表第一部商用SEM(JSM-1)1958年中国科学院组织

22、研制1959年第一台100KV电子显微镜 1975年第一台扫描电子显微镜DX3 在中国科学院科学仪器厂(现北京中科科仪技术发展有限责任公司)研发成功1980年中科科仪引进美国技术,开发KYKY1000扫描电镜工作原理扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。电子束和固体样品表面作用时的物理现象当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红

23、外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。背散射电子背散射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。 背反射电子的产生范围在100nm-1mm深度。背反射电子产额和二次电子

24、产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。二次电子二次电子是指背入射电子轰击出来的核外电子。由于原子核和外层价电子间的结合能很小,当原子的核外电子从入射电子获得了大于相应的结合能的能量后,可脱离原子成为自由电子。如果这种散射过程发生在比较接近样品表层处,那些能量大于材料逸出功的自由电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子来自表面5-10nm的区域,能量为0-50eV。它对试样表面状

25、态非常敏感,能有效地显示试样表面的微观形貌。由于它发自试样表层,入射电子还没有被多次反射,因此产生二次电子的面积与入射电子的照射面积没有多大区别,所以二次电子的分辨率较高,一般可达到5-10nm。扫描电镜的分辨率一般就是二次电子分辨率。二次电子产额随原子序数的变化不大,它主要取决与表面形貌。特征X射线特征X射线试原子的内层电子受到激发以后在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射。 X射线一般在试样的500nm-5m m深处发出。俄歇电子如果原子内层电子能级跃迁过程中释放出来的能量不是以X射线的形式释放而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇

26、电子。因每一种原子都由自己特定的壳层能量,所以它们的俄歇电子能量也各有特征值,能量在50-1500eV范围内。 俄歇电子是由试样表面极有限的几个原子层中发出的,这说明俄歇电子信号适用与表层化学成分分析。产生的次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。SEM成象图(3张)为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。原则上讲,利

27、用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。光学显微镜(OM)、TEM、SEM成像原理比较由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的光学显微镜、TEM、SEM成像原理比较缩小形成能谱仪获得。具有一定能量、一定束流强度和束斑直径的微细电子束,在扫

28、描线圈驱动下,于试样表面 2 材料形貌分析观察作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。原理结构扫描电子显微镜具有由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电扫描电子显微镜的原理和结构示意图光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。 末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电

29、子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。扫描电子显微镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。(以下提到扫描电子

30、显微镜之处,均用SEM代替)真空系统和电源系统真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。成像系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。之所以要用真空,主要基于以下两点原因:电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。为了增大电子的平均自由程,从而使

31、得用于成像的电子更多。电子光学系统电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。电子枪其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但

32、这种电子枪要求很高的真空度。电磁透镜其作用主要是把电子枪的束斑逐渐缩小,是原来直径约为50m m的束斑缩小成一个只有数nm的细小束斑。其工作原理与透射电镜中的电磁透镜相同。 扫描电镜一般有三个聚光镜,前两个透镜是强透镜,用来缩小电子束光斑尺寸。第三个聚光镜是弱透镜,具有较长的焦距,在该透镜下方放置样品可避免磁场对二次电子轨迹的干扰。扫描线圈其作用是提供入射电子束在样品表面上以及阴极射线管内电子束在荧光屏上的同步扫描信号。改变入射电子束在样品表面扫描振幅,以获得所需放大倍率的扫描像。扫描线圈试扫描点晶的一个重要组件,它一般放在最后二透镜之间,也有的放在末级透镜的空间内。样品室样品室中主要部件是样

33、品台。它出能进行三维空间的移动,还能倾斜和转动,样品台移动范围一般可达40毫米,倾斜范围至少在50度左右,转动360度。 样品室中还要安置各种型号检测器。信号的收集效率和相应检测器的安放位置有很大关系。样品台还可以带有多种附件,例如样品在样品台上加热,冷却或拉伸,可进行动态观察。近年来,为适应断口实物等大零件的需要,还开发了可放置尺寸在125mm以上的大样品台。信号检测放大系统其作用是检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。不同的物理信号需要不同类型的检测系统,大致可分为三类:电子检测器,应急荧光检测器和X射线检测器。 在扫描电子显微镜中最普遍使用的是电子

34、检测器,它由闪烁体,光导管和光电倍增器所组成。当信号电子进入闪烁体时将引起电离;当离子与自由电子复合时产生可见光。光子沿着没有吸收的光导管传送到光电倍增器进行放大并转变成电流信号输出,电流信号经视频放大器放大后就成为调制信号。这种检测系统的特点是在很宽的信号范围内具有正比与原始信号的输出,具有很宽的频带信号检测放大系统(10Hz-1MHz)和高的增益(105-106),而且噪音很小。由于镜筒中的电子束和显像管中的电子束是同步扫描,荧光屏上的亮度是根据样品上被激发出来的信号强度来调制的,而由检测器接收的信号强度随样品表面状况不同而变化,那么由信号监测系统输出的反营养品表面状态的调制信号在图像显示

35、和记录系统中就转换成一幅与样品表面特征一致的放大的扫描像。主要性能参数放大率与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。所以,SEM中,透镜与放大率无关。场深在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。作用体积电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。作用体积的厚度因信号的不同而不同:欧革电子:

36、0.52纳米。次级电子:5,对于导体,=1纳米;对于绝缘体,=10纳米。背散射电子:10倍于次级电子。特征X射线:微米级。X射线连续谱:略大于特征X射线,也在微米级。工作距离工作距离指从物镜到样品最高点的垂直距离。如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。成象次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。表面分析欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体

37、积),所以只能用于表面分析。表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。应用范围生物:种子、花粉、细菌医学:血球、病毒动物:大肠、绒毛、细胞、纤维材料1:陶瓷、高分子、粉末、金属、金属夹杂物、环氧树脂化学、物理、地质、冶金、矿物、污泥(杆菌) 、机械、电机及导电性样品,如半导体(IC、线宽量测、断面、结构观察)电子材料等。扫描电子显微镜在新型陶瓷材料显微分析中的应用1显微结构的分析在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微

38、镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构

39、分析研究方面同样显示出极大的优势。主要表现为: 力学加载下的微观动态 (裂纹扩展)研究 ;加热条件下的晶体合成、气化、聚合反应等研究 ;晶体生长机理、生长台阶、缺陷与位错的研究; 成分的非均匀性、壳芯结构、包裹结构的研究; 晶粒相成分在化学环境下差异性的研究等。2纳米尺寸的研究纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒 ”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因

40、此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。图 2所示是纳米钛酸钡陶瓷的扫描电镜照片,晶粒尺寸平均为 20nm。3铁电畴的观测压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与

41、器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。铁电畴 (简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察电畴和畴壁的显微结构及相变的动态原位观察 (电畴壁的迁移)。扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用

42、扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。图 3是扫描电子显微镜观察到的 PLZT材料的 90电畴。扫描电子显微镜 与其他设备的组合以实现多种分析功能。在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原位化学成分或晶体结构分析,提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为了适应不同分析目的的要求,在扫描电子显微镜上相继安装了许多附件,实现了一机多用,成为一种快速、直观、综合性分析仪器。把扫描电子显微镜应用范围扩大到各种显微或微区分析方面,充

43、分显示了扫描电镜的多种性能及广泛的应用前景。目前扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统(即能谱仪,EDS),主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统 (即结晶学分析系统),主要用于晶体和矿物的研究。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如显微热台和冷台系统,主要用于观察和分析材料在加热和冷冻过程中微观结构上的变化;拉伸台系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到重要作用。TEM透射电子显微镜(英语:Transm

44、ission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.10.2nm,放大倍数为几万百万倍,用于观察超微结构,即小于0.2微米、光学显微镜下无法看清的结构,又称“亚显微结构”。发展史TEM是德国科学家Ruskahe和Knoll在前人Garbor和Busch的基础上于1932年发明的。成像原理透射电子显微镜的成像原理可分为三种情况:吸收像:当电子射到质量、密度大的样品时,主要

45、的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。TEM透射电镜衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。 相位像:当样品薄至100A以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。组件电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。 聚光镜:将

46、电子束聚集,可用于控制照明强度和孔径角。 样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。 物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。 中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。 透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。 此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。应用透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制

47、备更薄的超薄切片,通常为50100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。特点以电子束作光源,电磁场作透镜。电子束波长与加速电压(通常50120KV)成反比。由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成。分辨力0.2nm,放大倍数可达百万倍。TEM分析技术是以波长极短的电子束作照明源,用电磁透镜聚焦成像的一种高分辨率(1nm)、高放大倍数的电子光学分析技术;用电镜(包括TEM)进行样品分析时,通常有两个目的:一个是获得高倍放大倍数的电子

48、图像,另一个是得到电子衍射花样;TEM常用于研究纳米材料的结晶情况,观察纳米粒子的形貌、分散情况及测量和评估纳米粒子的粒径。是常用的纳米复合材料微观结构的表征技术之一。XPS(X射线光电子能谱分析(XPS))历史沿革1887年,海因里希鲁道夫赫兹发现了光电效应,1905年,爱因斯坦解释了该现象(并为此获得了1921年的诺贝尔物理学奖)。两年后的1907年,P.D. Innes用伦琴管、亥姆霍兹线圈、磁场半球(电子能量分析仪)和照相平版做实验来记录宽带发射电子和速度的函数关系,他的实验事实上记录了人类第一条X射线光电子能谱。其他研究者如亨利莫塞莱、罗林逊和罗宾逊等人则分别独立进行了多项实验,试图

49、研究这些宽带所包含的细节内容。XPS(X-ray photoelectron spectroscopy(XPS))的研究由于战争而中止,第二次世界大战后瑞典物理学家凯西格巴恩和他在乌普萨拉的研究小组在研发XPS设备中获得了多项重大进展,并于1954年获得了氯化钠的首条高能高分辨X射线光电子能谱,显示了XPS技术的强大潜力。1967年之后的几年间,西格巴恩就XPS技术发表了一系列学术成果,使XPS的应用被世人所公认。在与西格巴恩的合作下,美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1981年西格巴恩获得诺贝尔物理学奖,以表彰他将XPS发展为一个重要分析技术所作出的杰出贡献。X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis)。最近英国VG公司制成可成像的X射线光电子谱仪,称为“ESCASCOPE”,除了可以得到ES-CA谱外,还可得到ESCA像,其空间分辨率可达到10m,被认为是表面分析技术的一项重要突破。物理原理XPS的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子。可以测量光电子的能量,以光电子的动能/束缚能 binding energy,(Eb=hv光

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论