版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1993年全国硕士研究生入学统一考试数学一试题一、填空题(此题共5小题,每题3分,总分值15分,把答案填在题中横线上.)(1)函数的单调减少区间为_.(2)由曲线绕轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_.(3)设函数的傅里叶级数展开式为,那么其中系数的值为_.(4)设数量场那么_.(5)设阶矩阵的各行元素之和均为零,且的秩为,那么线性方程组的通解为_.二、选择题(此题共5小题,每题3分,总分值15分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的,把所选项前的字母填在题后的括号内.)(1)设,那么当时,是的 ( )(A)等价无穷小 (B)同阶但非等价无穷小 (C)高阶无
2、穷小 (D)低阶无穷小(2)双纽线所围成的区域面积可用定积分表示为( )(A)(B)(C)(D)(3)设有直线及,那么及的夹角为 ( )(A) (B)(C)(D)(4)设曲线积分及路径无关,其中具有一阶连续导数,且,那么等于 ( )(A)(B)(C)(D)(5),为三阶非零矩阵,且满足,那么(A)时,的秩必为1 (B)时,的秩必为2 (C)时,的秩必为1 (D)时,的秩必为2三、(此题共3小题,每题5分,总分值15分.)(1)求.(2)求.(3)求微分方程,满足初始条件的特解.四、(此题总分值6分)计算,其中是由曲面及所围立体的外表外侧.五、(此题总分值7分)求级数的和.六、(此题共2小题,每
3、题5分,总分值10分.)(1)设在上函数有连续导数,且证明在内有且仅有一个零点.(2)设,证明.七、(此题总分值8分)二次型,通过正交变换化成标准形,求参数及所用的正交变换矩阵.八、(此题总分值6分)设是矩阵,是矩阵,其中,是阶单位矩阵,假设,证明的列向量组线性无关.九、(此题总分值6分)设物体从点出发,以速度大小为常数沿轴正向运动.物体从点及同时出发,其速度大小为,方向始终指向,试建立物体的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(此题共2小题,每题3分,总分值6分,把答案填在题中横线上.)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,那么第二
4、次抽出的是次品的概率为_.(2)设随机变量服从上的均匀分布,那么随机变量在内的概率分布密度_.十一、(此题总分值6分)设随机变量的概率分布密度为,.(1)求的数学期望和方差.(2)求及的协方差,并问及是否不相关?(3)问及是否相互独立?为什么?1993年全国硕士研究生入学统一考试数学一试题解析一、填空题(此题共5个小题,每题3分,总分值15分.)(1)【答案】【解析】由连续可导函数的导数及的关系判别函数的单调性.将函数两边对求导,得.假设函数严格单调减少,那么,即.所以函数单调减少区间为.【相关知识点】函数的单调性:设函数在上连续,在内可导.(1) 如果在内,那么函数在上单调增加;(2) 如果
5、在内,那么函数在上单调减少.(2)【答案】【解析】先写出旋转面的方程:.令.那么在点的法向量为所以在点处的法向量为因指向外侧,故应取正号,单位法向量为(3)【答案】【解析】按傅式系数的积分表达式,所以 .因为为奇函数,所以;为偶函数,所以 (4)【答案】【解析】先计算的梯度,再计算该梯度的散度.因为 ,所以 .数量场分别对求偏导数,得由对称性知将分别对求偏导,得因此,.(5)【答案】【解析】因为,由知,齐次方程组的根底解系为一个向量,故的通解形式为.下面根据条件“的各行元素之和均为零来分析推导的一个非零解,它就是的根底解系.各行元素的和均为0,即而齐次方程组为两者比拟,可知是.二、选择题(此题
6、共5小题,每题3分,总分值15分.)(1)【答案】(B)【解析】为“型的极限未定式,又分子分母在点处导数都存在,运用洛必达法那么,有因为当,所以,所以所以及是同阶但非等价的无穷小量.应选(B).【相关知识点】无穷小的比拟:设在同一个极限过程中,为无穷小且存在极限 ,(1) 假设称在该极限过程中为同阶无穷小;(2) 假设称在该极限过程中为等价无穷小,记为;(3) 假设称在该极限过程中是的高阶无穷小,记为.假设不存在(不为),称不可比拟.(2)【答案】(A)【解析】由方程可以看出双纽线关于轴、轴对称,(如草图)只需计算所围图形在第一象限局部的面积;双纽线的直角坐标方程复杂,而极坐标方程较为简单:.
7、显然,在第一象限局部的变化范围是.再由对称性得应选(A).(3)【答案】(C)【解析】这实质上是求两个向量的夹角问题,及的方向向量分别是及的夹角的余弦为 所以,应选(C).(4)【答案】(B)【解析】在所考察的单连通区域上,该曲线积分及路径无关即 ,化简得, 即,解之得 , 所以 .由得,因此 ,故应选(B).【相关知识点】曲线积分在单连通区域内及路径无关的充分必要条件是(5)【答案】(C)【解析】假设是矩阵,是矩阵,那么.当时,矩阵的三行元素对应成比例,有,知,所以,可能是1,也有可能是2,所以(A)、(B)都不准确;当时,矩阵的第一行和第三行元素对应成比例,于是从得,又因,有,从而必成立,
8、所以应中选(C).三、(此题共3小题,每题5分,总分值15分.)(1)【解析】令,那么当时,这是型未定式,而是两个重要极限之一,即所以 .而 ,故 .(2)【解析】方法一:.令,那么,所以 所以 方法二:令,那么,所以 关于的求解同方法一,所以(3)【解析】解法一:所给方程为伯努利方程,两边除以得,即.令,那么方程化为,即,即 ,积分得 .由得,即 ,代入初始条件,得,所以所求方程的特解是.解法二:所给方程可写成 的形式,此方程为齐次方程.令,那么,所以方程可化为,别离变量得,积分得 , 即.以代入上式,得.代入初始条件,得,故特解为.四、(此题总分值6分)【解析】将表成,那么又是封闭曲面,可
9、直接用高斯公式计算.记围成区域,见草图,取外侧,由高斯公式得用球坐标变换求这个三重积分.在球坐标变换下,为:,于是五、(此题总分值7分)【解析】先将级数分解,第二个级数是几何级数,它的和求第一个级数的和转化为幂级数求和.考察所以 .因此原级数的和.六、(此题共2小题,每题5分,总分值10分.)(1)【解析】证法一:由拉格朗日中值定理可知,在存在一点,使得即 .因为,所以当时,故.由,所以在上由介值定理可知,必有一点使得.又因为,故为严格单调增函数,故值唯一.证法二:用牛顿-莱布尼兹公式,由于以下同方法1.(2)【解析】先将不等式做恒等变形:因为,故原不等式等价于或.证法一:令,那么.因为,所以
10、,故.从而在时为严格的单调递增函数,故.由此 ,即 .证法二:令,那么 .当时,所以为严格的单调递减函数,故存在使得成立.即.七、(此题总分值8分)【解析】写出二次型的矩阵为,它的特征方程是经正交变换化成标准形,那么标准形中平方项的系数1,2,5就是的特征值.把代入特性方程,得.因知.这时 .对于,由,得 .对于,由,得.对于,由,得.将单位化,得故所用的正交变换矩阵为【相关知识点】二次型的定义:含有个变量的二次齐次多项式(即每项都是二次的多项式) 其中,称为元二次型.令,那么二次型可用矩阵乘法表示为其中是对称矩阵,称为二次型的矩阵.八、(此题总分值6分)【解析】证法一:对按列分块,记,假设
11、即 , 亦即 .两边左乘,得 ,即 ,亦即 .所以线性无关.证法二:因为是矩阵,所以.又因,故.所以线性无关.【相关知识点】1.向量组线性相关和线性无关的定义:存在一组不全为零的数,使,那么称线性相关;否那么,称线性无关:乘积的秩小于等于单个矩阵的秩九、(此题总分值6分)【解析】如图,设当运动到时,运动到.由的方向始终指向,有,即 (1)又由,得 由题意,单调增,所以 .亦即.(2)由(1),(2)消去,便得微分方程.初始条件显然是.十、填空题(此题共2小题,每题3分,总分值6分,把答案填在题中横线上.)(1)【解析】可以用古典概型,也可以用抽签原理.方法一:从直观上看,第二次抽出次品的可能性
12、及第一次抽到正品还是次品有关,所以考虑用全概率公式计算.设事件“第次抽出次品由得.应用全概率公式方法二:对填空题和选择题可直接用抽签原理得到结果. 由抽签原理(抽签及先后次序无关),不放回抽样中第二次抽得次品的概率及第一次抽得次品的概率一样,都是.(2)【解析】方法一:可以用分布函数法,即先求出分布函数,再求导得到概率密度函数.由条件,在区间上服从均匀分布,得的概率密度函数为先求的分布函数.当时,;当时,;当时,即于是,对分布函数求导得密度函数 故随机变量在内的概率分布密度.方法二:也可以应用单调函数公式法.由于在(0,4)内单调,反函数在(0,2)内可导,且导数恒不为零,因此,由连续型随机变量函数的密度公式,得到随机变量的概率密度为故随机变量在内的概率分布密度.十一、(此题总分值6分)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【大学课件】模拟电子技术实验前导
- 2025届福建省三明市普通高中高三下学期一模考试英语试题含解析
- 陕西省西安市高新一中2025届高三最后一模英语试题含解析
- 云南省西畴县第二中学2025届高三第二次模拟考试英语试卷含解析
- 2025届重庆市南坪中学高三最后一模数学试题含解析
- 9.1《念奴娇•赤壁怀古》课件 2024-2025学年统编版高中语文必修上册
- 河南省三门峡市2025届高三六校第一次联考数学试卷含解析
- 2025届新疆阿勒泰第二高级中学高考适应性考试数学试卷含解析
- 《solidworks 机械设计实例教程》 课件 任务3.1 法兰盘的设计
- 2025届山东省济南市山东师范大学附中高考英语倒计时模拟卷含解析
- 大龄自闭症儿童课程设计
- 机电安装行业危险源因素识别清单
- 儿牙口腔知识科普(小牙医课堂)
- 教科版三年级上册科学教案(全册)
- 2024年政府补贴协议书
- 2024年六年级语文下册全册单元教材分析
- 2024新苏教版一年级数学册第五单元第1课《认识11~19》课件
- 《Photoshop CC图形图像处理实例教程》全套教学课件
- 2024-2030年中国永磁耦合器行业经营优势及竞争对手现状调研报告
- 福建省泉州市安溪县实验小学2023-2024学年三年级上学期素养比赛语文试卷
- 小学科学教科版五年级上册全册易错知识点专项练习(判断选择-分单元编排-附参考答案和点拨)
评论
0/150
提交评论