三年级几何巧求面积教师版_第1页
三年级几何巧求面积教师版_第2页
三年级几何巧求面积教师版_第3页
三年级几何巧求面积教师版_第4页
三年级几何巧求面积教师版_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识要点巧求面积我们已经学会了计算正方形、长方形的周长和面积,运用这些基础的知识,可以解决一些较复杂 的面积计算.由长方形、正方形引出的问题形式多样,要解决这些问题,关键要能够合理地切拼, 要做到这一点,就需要我们开动脑筋,细心观察,掌握图形特点,找出分割与切拼的方法,达到 解决问题的目的.1 .掌握巧妙的解题方法.2 . 了解等量代换”的思想.3 .培养学生灵活运用的能力.简单求面积【例1】4个相同的长方形和一个小正方形拼成一个面积是100平方厘米的大正方形,已知小正方形的面积是36平方厘米,问长方形的长和宽各是多少厘米?【分析】100 10 10 , 36 6 6,大正方形的边长为10厘米

2、,小正方形的边长为 6厘米,长方形的宽为: (10 6) 2 2 (厘米),长为:6 2 8 (厘米)【例2】如图,一张长方形纸片,长 7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠, 未盖住的阴影部分的面积是多少平方厘米?【分析】阴影部分的宽是7 5 2(厘米),长是5 2 3 (厘米),面积是2 3 6 (平方厘米).【例3】一个长方形周长是 80厘米,它是由3个完全相同的小正方形拼成的,那么每个小正方形的面积是多少平方厘米?小正方形的边长:80 8 10厘米,每个小正方形的面积:10 10 100平方厘米。面积增减【例4】一块长方形铁板,长 15分米,宽12分米,如果长和宽各

3、减少 2分米,面积比原来减少多少平方 分米?如图,铁板面积比原来减少多少平方分米,就是求阴影部分的面积,用原长方形的面积减去空白部分的面积.(12 2)15 12 (15 2)= 180 130=50(平方分米)【例5】一块长方形地长是80米,米?80 80 45 (455)例6人民路小学操场原来长来增加多少?(80 20) (55 5)宽是45米,如果把宽增加 5米,要使原来的面积不变,长应减少多少8 (米).80米,宽55米,改造后长增加 20米,宽减少5米.现在操场的面积比原80 55 600 (平方米).【例7】 有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方

4、米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?【分析】根据题意,可以用下图表示增减变化的情况,从图中可以看出,原来长方形的长为(2720 680) (60 50) 340 (米),宽为 680 340 50 52 (米)。【例8】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少 66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?【分析】 如图,正方形的边长是(66 2 5) (5 2) 8(厘米),长方形面积为8 8 66 130(平方厘米)。【例9】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新

5、正方形的面积比原正方形大120平方厘米.求原正方形的面积?【分析】120 6 6 84 (平方厘米)84 2 42 (平方厘米)42 6 7 (厘米)原来的面积:7 7 49(平方厘米).【例10】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米【分析】由图可知,长方形的长是宽的4倍,宽的6倍是24厘米,则长方形的宽是 4厘米,故图中空白部分的面积是4 4 2 32(平方厘米).已知小纸片的宽是12厘米,问阴影部【例11】若干同样大小的长方形小纸片摆成了如图所示的图形分的总面积是多少平方厘米?【分析】从图中可以看出5个长=3个长+3个宽,正方形边长=长-宽。所以长方形的

6、长为:3 12 2 18(厘米),阴影小正方形的边长是 18 12 6(厘米),阴影部分面积是6 6 3 108(平方厘米)【例12】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)6【分析】用A表示两个正方形重合部分的面积,用B表示除重合部分外大正方形的面积,用C表示除重合部分外小正方形的面积.据题意,要求(B C)是多少平方厘米,即求(B A) (C A)的 面积,(B A) =6 6 36 (平方厘米),C A 3 3 9 (平方厘米),因此36 9 27 (平方 厘米)就是所求的两块没有重合的阴影部分面积差。找规律【例13】有10张长3厘米,宽2厘米

7、的纸片,将它们按照下图的样子摆放在桌面上,那么这 片所盖住的桌面的面积是多少平方厘米?10张纸每多盖一张,遮住的面积增加2 1,3 2 2 1 9 24 (平方厘米)平移【例14】【分析】【例15】【分析】【例16】【分析】有一块菜地长37米,宽25米,菜地中间留了 1米宽的路,把菜地平均分成四块,每一块地的面积是多少?25米(法一)阴影部分的面积为: 小长方形的面积为:(92525 161) 4(法二)每一小块的长方形的长为:的面积为:18 12 216 (平方米)37 1 1 1 61 (平方米),菜地的面积为:216(37一条白色的正方形手帕,它的边长是米,这条手帕白色部分的面积是多少3

8、7 25 925 (米),(平方米)1) 2 18 (米),宽为(25 1) 212 (米),小长方形18厘米,手帕上横竖各有二道红条,红条宽都是2厘把竖的两个红条平行移动一下,使它们紧贴正方形的左端,把横的两个红条平行移动,使它们紧贴正方形的下端,白色部分的面积等于边长为14厘米的正方形面积,即196平方厘米.(第六届小机灵杯决赛第七题)图中由若干个相同的正方形拼成,图形的周长是68厘米,这个图形的面积是多少平方厘米?小正方形的边长为:68 34 2厘米,每个小正方形的面积为:2 2 4平方厘米。这个图形的面积为:16 4 64平方厘米【例17】示.如果铺满这块地面共用101块黑色瓷砖,那么

9、白色瓷砖用了多少块?用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所我们可以让静止的瓷砖动起来,把对角线上的黑瓷砖,通过旋转、平移两次动态的处理,移到两条边上(如图 2).在这一转化过程中瓷砖的位置发生了变化,但数量没有变,此时白色瓷砖组成一个正方形.(101 1) 2 51 (大正方形的边长),50 50 2500 (块),51 1 50 (白色瓷砖组成正方形的边长) 所以白色瓷砖共用了 2500块.翻折【例18】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连, 多少平方厘米?

10、那么图中阴影部分的面积总和等于【分析】【例19】连结小正方形中心与顶点,发现阴影部分的面积等于中间正方形的面积,等于大正方形面积10 10 2 50 (平方厘米)已知图中大正方形的面积是 22平方厘米,小正方形面积是多少平方厘米图中的小正方形旋转为右图:由此可见,小正方形的面积为大正方形面积的一半。22 2 11 (平方厘米)【例20】(第七届小机灵杯决赛第六题)图中是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是 8,那么最大的正方形的边长是多少?10【分析】通过图1,可以看出题目中最大正方形边长是最小正方形的2 2 4 (倍).而最小正方形边长为8 4 2,所以最大

11、的正方形的边长是 248【例21】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积。【分析】第一个正方形的面积是 20 20 400 (平方厘米),第二个正方形的面积如图,实际上是第一个正方形面积的一半.依次类推,第五个正方形的面积为:400 2 2 2 2 25(平方厘米).6、8、10厘米,乙的一个顶点在甲的中心上,【例22】甲、乙、丙三个正方形,它们的边长分别是丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米【分析】甲与乙的重合部分是甲面积的-;乙与丙的重合部分是乙面积的-;所以这三个正方形覆

12、盖44面积是:10 10 8 8 6 6 6 6 4 8 8 4 175 (平方厘米).割补【例23你有什么好的方法计算所给图形的面积呢?(单位:厘米)【例2例计算4 (5 1 1 1) 8平方厘米右边的长方形面积是:10平方厘米【分析】(法1)把图分割成两个长方形,(图1)中两个长方形的总面积就是所求的面积.4 (9 3) 9 3 75(平方厘米).(法2)把右图分解成两个长方形,(图2)中两个长方形的面积分别为(9 4) 3 39(平方厘米)、9 4 36 (平方厘米),因此它的总面积是 39 36 75 (平方厘米).(9 4) 3 9 4 75 (平 方厘米).(法3)如果补上一个边长

13、是9厘米的正方形(图3),就成了一个面积是(4 9) (9 3) 156(平方厘米)的大长方形.因此,用这个长方形的面积减去正方形的面积, 就是要求的图形面积(4 9) (9 3) 9 9 75 (平方厘米).【分析】左边的长方形面积是:一共是:8 10 1 1 19平方厘米【例25】有一个正方形水池(图中阴影部分),在它的外围修一个宽是 8米的草地,草地的面积为 480平方米,求水池的边长?【分析】【例26】【分析】【例2例【分析】【例28】【分析】将图分割:这样就得到四个面积相等的长方形 求得水池的边长:15 8 7(米).可求得长方形的长:480 4 8 15(米)由此(第八届小机灵杯初

14、赛第六题)如下图,网格中的小正方形的面积都是 影部分的面积是多少平方厘米?1平方厘米,那么阴把阴影分成上下两个三角形,阴影部分的面积:412422 6平方厘米卜图中,每个小格的面积为“1”平方厘米,那么阴影部分的面积是多少平方厘米?每个小格的面积为 1”平方厘米,那么每个小格的边长为1厘米。阴影部分的面积等于三角形的面 积减去长方形的面积。即:7 4 2 3 1 11平方厘米如图,长方形ABCD的周长是16厘米,在它的每一条边上各画一个以该边为边长的正方形, 已知这四个正方形的面积和是68平方厘米,求长方形 ABCD的面积?利用扩”的思想,将图1转化成图2,则正方形EBIG的面积是(16 2)

15、2 64 (平方厘米), 阴影部分的面积等于大正方形 EBIG的面积减去小正方形 EFDA和小正方形DHIC的面积再 减去长方形FGHD的面积,因为阴影部分的面积等于长方形 FGHD的面积。所以阴影部分的 面积为(64 68 2) 2 15 (平方厘米).GFAC图2【例29】(2005年第三届小学“希望杯”全国数学邀请赛四年级第2试第13题)图中ABC是直角三ABC的面积是角形,BDEF是正方形,AD 4厘米,FC 9厘米,那么三角形 方厘米。【分析】平面几何,割补法。因为S ABC S AGC、S ADE S AHE、 S EFC S 日CSDBFESHEIG36平方厘米;所以BD BF

16、6 厘米,所以 S ABC (AB BC)2 (46)(6 9)2 75平方厘米。【例30】(2009年“中环杯”三年级初赛试题)如图在边长为EFGH , FI=2 , GJ=1 ,试求四边形 EFGH的面积。10的正方形ABCD内,有一个四边形分割的方法如图所示,四边形EFGH的面积为(10 10 1 2) 251【例31】如图,阴影部分四边形的外接图形是边长为平方厘米。10cm的正方形,则阴影部分四边形的面积是【分析】将四个空白部分分别沿着阴影部分的四条边折叠进去,我们发现,空白部分比阴影部分多中间的矩形部分的面积。中间的矩形面积为 4 1 4平方厘米,所以阴影部分面积为 10 10 42

17、 48平方厘米。对角定理【例32 如下图正方形内有两个小正方形, 面积分别是9平方厘米和4平方厘米,求阴影部分的面积?【分析】(法一)9 3 3,小长方形的长为3厘米,4 2 2,小长方形的宽为2厘米,阴影部分的面积:3 2 2 12平方厘米。(法二)两块阴影部分的面积是相等的,那么: 4 9 6 6,那么,阴影部门的面积是 6 2 12 平方厘米。【例33下图中所标的数字为相应区域的面积,那么阴影部分面积是多少平方厘米?20 15史【分析】30与15是2倍的关系,那么阴影部分的面积是:30 15 20 40平方厘米,【例34如图,一个长方形被分成 8个小长方形(每个长方形的长和宽都是整数),

18、其中有6个小长方形的面积如图所示(单位:平方厘米) ,那么这个大长方形面积是多少?2030361612【分析】(法一)下层的长方形竖直方向的边长只能是2厘米或者4厘米,当此边为2厘米时,面积为16平方厘米的水平边长为 8厘米,与面积为20平方厘米的长方形矛盾因此下层长方形的纵边只能是 4厘米,面积为36平方厘米的长方形的横边为9厘米,面积为16平方厘米的长方形的横边为 4厘米,面积为12平方厘米的长方形的横边为 3厘米面积为20平方厘米的长方形的纵边为 5厘米,面积为30平方厘米的长方形的横边为 6厘米,大 正方形的横边长为 9 4 6 3 22厘米,纵边长为4 5 9厘米,大正方形的面积为

19、22 9 198 平方厘米。(法二)对角定理:第一行第一个数:20 36 16 45第二行第三个数第一行第四个数30 16 20 2430 12 24 15总面积:45 20 30 1536 16 24 12 198平方厘米【例35 如图,9个小长方形拼成一个大长方形,其中编号为1的长方形也是一个正方形, 且编号为1、2、3、4、5的长方形面积分别为 4平方厘米,8平方厘米,12平方厘米,16平方厘米,20 平方厘米,求编号为 6的长方形面积是多少平方厘米?11O1_324Q【分析】编号为1的正方形的边长为 2厘米,编号为3的长方形的长为12 2 6厘米,那么,编号为6的长 为是6厘米。编号为

20、2的长方形的长为4厘米,编号为4的长方形的宽为16 4 4厘米,那么编号为5的长方形的长为5厘米,那么编号为6的长方形的宽为5厘米,【例36】编号为6的长方形的面积为6 5 30平方厘米。有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间相互叠合(如图20,黄色面积是12,绿色面积是 8,那么正方形盒1),已知露在外面部分中,红色面积是 的底面积是多少?图1图2【分析】图1中,黄色纸片露出部分与绿色纸片露出部分面积不同,把黄色纸片向左移动,在这个移动过程中,黄色纸片露出部分减少的面积等于绿色纸片纸片露出部分增加的面积,它们露出 的面积和不变,所以图 2中黄色露出部分面积为 10

21、,绿色面积也为10。在图2中,红、黄、绿三个长方形的面积已经求出,因为长方形中对角的面积乘积相等,故有:黄X绿=红*白。空白长方形的面积应为10 10 20 5 ,纸盒的底面积为 20 10 10 5 45。解答此题的关键是让黄色正方形纸片移动, 使复杂的图形变为基本图形。【例37】 用15米长的木栏沿着围墙围一个种花草的长方形或正方形的苗圃,其中一面利用围墙,如 果每边的长度都是整数,那么有几种围法,怎样围才能使围成的面积为最大?【分析】根据题意,一面利用围墙,其他三边有下列几种围法:(见表)和围墙平行的一条边长(米)131197531和围墙垂直的一条边长(米)1234567从表中可以看出,

22、共7种围法,当长是7米,宽是4米时,围成的面积最大,是7 4 28 (平【例3例方米).一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形。下面一个长方形是由9个小正方形组成的完美长方形。图中正方形A和B的边长分别是7厘米和4厘米,那么这个完美长方形的面积分别是多少平方厘米?【分析】为了叙述方便,我们将图中各个小正方形分别用字母表示(如图)。设最小的正方形边长为 x厘米,又因为小正方形 A的边长为7厘米,小正方形 B的边长为4厘米,所以小正方形C的边长可以表示为7 x (厘米),小正方形D的边长可以表示为7xx72x(厘米),小正方形E的边长可以表示为7x411x(厘米),小正方

23、形F的边长可以表示为11x415x(厘米),小正方形G的边长可以表示为15x419x(厘米),小正方形H的边长可以表示为7x714x(厘米),观察大长方形可知:小正方形D、C、H的边长之和等于小正方形F、G的边长之和,可以列方程为:(7 2x) (7 x) (14 x) (15 x) (19 x)解得x 1从而可得小正方形 C、D、E、F、G、H的边长分别为8厘米、9厘米、10厘米、14厘 米、18厘米、15厘米。大长方形的长为:18 15 33 (厘米),宽为:14 18 32 (厘米),大长方形的面积为:33 32 1056 (平方厘米).【例3例(2008年数学解题能力展示初赛)有125

24、个同样大小的正方体木板,木板的每个面的面积均 为1平方厘米,其中63个表面涂上白色,还有 62个表面涂上蓝色,将这125个正方体木板 黏在一起,形成一个棱长为 5厘米大正方体木板。这个大正方体木板的表面上,蓝色的面积 最多是多少平方厘米?【分析】要使这个大正方体木块的表面上,蓝色的面积最多,尽量在它的8个角和12条棱上全部放蓝色的,余下的再放到6个面上。1 3 8 1 2 3 12 1 (62 8 3 12) 24 72 18 114平方厘米。【练习1】有一个边长为5米的正方形花坛,在外围四周铺1米宽的走道,走道的面积是多少平方米?【分析】(法一)把阴影面积分成四块大小形状一样的长方形,走道的

25、面积为 (5 1) 1 4 24 (平方米) (法二)(5 1 1) (5 1 1) 5 5 24 (平方米)【练习2】4个相同的长方形和一个小正方形拼成一个面积是100平方厘米的大正方形,已知小正方形的面积是36平方厘米,问长方形的长和宽各是多少厘米?【分析】100 10 10, 36 6 6,大正方形的边长为10厘米,小正方形的边长为 6厘米,长方形的宽为:(10 6) 2 2 (厘米),长为:6 2 8 (厘米)【练习3】两张边长6厘米的正方形纸,一部分叠在一起放在桌上,问桌子被覆盖住面积是多少?(单位:厘米)【分析】两个正方形的面积一重叠部分面积=桌子被覆盖面积:6 6 2 3 3 63平方厘米【练习4】如图长方形的周长是 66分米,长是20分米,这个长方形的面积是多少平方分米?20分米根据题意长方形的宽为 66 2 2013 (分米)。所以长方形的面积为 20 13 260 (平方分米)【练习5】一个正方形,如果边长增加 1厘米,那么面积增加17平方厘米,这个正方形原来的面积是多少平方厘米?【分析】原来正方形的边长:(17 1) 2 1 8厘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论