平面与平面垂直的判定与性质26_第1页
平面与平面垂直的判定与性质26_第2页
平面与平面垂直的判定与性质26_第3页
平面与平面垂直的判定与性质26_第4页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平面与平面垂直的判定与性质教学重、难点:1. 重点:平面与平面垂直的判定及应用。2. 难点:二面角的度量及判定定理的应用。教学内容:要点一、二面角1二面角定义从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle) .这条直线叫做二面角的棱,这两个半平面叫做二面角的面.2 二面角的求法与画法棱为AB、面分别为、的二面角记作二面角AB. 有时为了方便,也可在,内 (棱以外的半平面部分)分别取点P、 Q,将这个二面角记作二面角P AB Q.如果棱记作l,那么这个二面角记作二面角l或 P l Q.3计算二面角大小的方法( 1)作二面角的平面角,并将其放在一个三角形中,解三角形

2、求出二面角的平面角大小,它就是二面角的大小。作二面角的平面角常用下列三种方法: 用定义作二面角的平面角在棱上取一点,分别在两个面内作棱的垂线,这两条射线组成二面角的平面角。利用定义作二面角的平面角,关键在于找棱及棱上的特殊点。学习时要特别注意平移和补形方法的灵活运用。用三垂线定理作二面角的平面角从二面角的一个面内选一个特殊点A ,由 A 向另一个平面作垂线垂足为 B ,再由 B 向棱作垂线交棱于 C,连结 AC ,则 ACB 就是二面角的平面角。利用三垂线定理(逆定理)作二面角的平面角是最常用的方法,它是通过二面角一个面上的点向另一个面(基面)作垂线(主垂线)的办法来实现的,因此选好基面,再作

3、主垂线,主垂线是解题的关键。 用垂面法作二面角的平面角作垂直于二面角的棱或二面角两个半平面的垂面,则该垂面与二面角两个半平面交线所成的角就是二面角的平面角。( 2)面积法如果一个多边形在一个平面内的射影是一个多边形,且这两个多边形所在平面所成的二面角为 ,则3 二面角的平面角如图( 1)在二面角。l的棱 l 上任取一点O,以点O 为垂足,在半平面和内分别作垂直于棱l的射线 OA 和 OB,则射线OA 和 OB 构成的 AOB 叫做二面角的平面角.( 2)二面角的平面角的大小与 O 点位置无关( 3)二面角的平面角的范围是 0, 180° .( 4)平面角为直角的二面角叫做直二面角.

4、例 1 如图, PC平面ABC, AB BC=CA PC,求二面角B PA C 的平面角的正切值分析由 PC平面 ABC,知平面ABC平面 PAC,从而 B 在平面 PAC上的射影在定理作出二面角的平面角解 PC 平面 ABC平面 PAC平面ABC,交线为AC作 BD AC于 D点,据面面垂直性质定理,AC上,由此可用三垂线BD平面 PAC,作 DE PA于 E,连 BE,据三垂线定理,则 BE PA,从而 BED是二面角 B PA C 的平面角设 PC a,依题意知三角形 ABC是边长为 a 的正三角形, 例 1 如图过正方形 ABCD的顶点 A 作 PA平面 ABCD,设 PA=AB a

5、求 (1) 二面角 B PC D的大小; (2) 平面 PAB 和平面 PCD所成二面角的大小分析 二面角 B PC D 的棱为 PC,所以找平面角作棱的垂线,而平面找二面角的棱解(1)PA平面ABCD , BD ACBD PC(三垂线定理 )在平面PBC 内,作 BE PC,E 为垂足,连结DE ,得 PC平面 PC D 的平面角PAB 和平面 PCD 所成二面角“无棱”须BED ,从而 DE PC,即 BED 是二面角B在 Rt PAB中,由PA AB=a(2)过 P 作 PQAB CD AB ,则 PQPQ CD , PQ平面 PAB ,平面 PCD平面PAB 平面PCD于PQ PAAB

6、 ,AB PQ PAPQ PA平面 ABCD , CD AD CD PD(三垂线定理的逆定理) PQCD PD PQ所以 APD 是平面 PAB 和平面 PCD 所成的二面角的平面角 PA AB=AD , APD=45 °即平面PAB 和平面 PCD 所成的二面角为45° .评注在求无棱二面角的大小时有时须作出棱线后再找平面角要点二、平面与平面垂直的判定1平面与平面垂直的定义,记法与画法.一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.两个互相垂直的平面通常画成此图的样子,此时,把直立平面的竖边画成与水平平面的横边垂直.平面与垂直,记作.2两个

7、平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. 例 3 过 S 引三条长度相等但不共面的线段SA、 SB、 SC,且 ASB= ASC=60°, BSC=90°。求证:平面ABC平面 BSC。证法一:作 AD平面 BSC, D 为垂足。 ASB= ASC=60°, SA=SB=SC,则 AS=AB=AC, D为 BSC的外心。又 BSC=90°, D为 BC的中点,即 AD在平面 ABC内。平面 ABC平面 BSC。证法二:取 BC的中点 D,连接 AD、 SD,易证 AD BC,又 ABS是正三角形, BSC为等腰直角三角形,

8、BD=SD222222,由勾股定理的逆定理,知AD SD, AD+SD= AD +BD=AB=AS AD平面 BSC。又 AD 平面 ABC,平面 ABC平面 BSC。评注 本题是证明面面垂直的典型例题,关键是将证明“面面垂直”问题转化为证明“线面垂直”。方法一是作平面的垂线而后证明它在另一个平面内;方法二则是在一个平面内找一条线段,证明它与另一个平面垂直。 例 3 已知:如图,在矩形ABCD中,已知, E 是 AD的中点,沿BE 将 ABE折起至 ABE的位置,使 AC=AD。( 1)求证:平面 ABE平面 BCDE;( 2)求 AC 和平面 BCD所成角的大小。要点三.两个平面垂直的性质两

9、个平面互相垂直时有下面两个性质:1 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。简述为:线面垂直” 。“若面面垂直,则2 那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内。此性质可以作为面面垂直的性质定理直接应用例 3平面如图, AB 是 OPAC平面 PBC.的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A、 B 的任意一点,求证:证明:设O 所在平面为,由已知条件,PA,BC 在内,所以 PABC.因为点 C 是圆周上不同于A、B 的任意一点,AB 是 O 的直径,所以, BCA 是直角,即BC AC.又因为 PA 与 AC 是 PAC

10、所在平面内的两条直线.所以 BC 平面 PAC .又因为 BC 在平面 PBC 内,所以,平面PAC平面 PBC .1. 正方体 ABCD-A 1B1C1D1 中,平面 ABC1D1 与正方体的其他各个面所成的二面角的大小分别为多少?C1D1A1B1CDBA( 450, 450, 900 )2如图,已知AB平面 BCD, BC CD,你能发现哪些平面互相垂直,为什么?答:面 ABC面 BCD面 ABD 面 BCD面 ACD面 A1下列命题中正确的是。l ;如果直线 l 与平面 内的无数条直线垂直,则如果直线 l 不垂直于 ,则 内没有与 l 垂直的直线;如果直线 l 不垂直于 ,则 内也可以有无数条直线与l 垂直;两直线 a,b 平行,由 a 可得出 b 。2如右图, PA平面 ABC,BC AC,求证: BCPC 。3. 如右图所示,在三棱柱ABC A1B1C1 中,AA1 平面 ABC,AC BC , D 是 AB 的中点。求证: CD平面 ABB1 A1 。A1C1B1ACD4. 已知正四面体ABCD中,各棱长均为2, E 为 AD的中点。( 1)求 AD与平面 BCD所成的角的正弦值;B( 2)求 EC与平面 BCD所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论