


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北师大版数学九年级上第三章、证明(三)-平行四边形、梯形复习讲义一、要点概况1、 平行四边形的定义: 两组对边分别 的四边形叫做平行四边形。 平行四边形是对称图形,其对称中心是。2、平行四边形的特征(性质定理及推论)(1)性质1:平行四边形的 对边平行且相等。(2)性质2:平行四边形的 邻角互补,对角相等。(3)性质3:平行四边形的对角线互相平分。(4)推论1:中心对称图形,对称中心是对角线的交点。(5)推论2:若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分四边形的面积。(6)推论3:夹在两条平行线间的 平行线段相等。3、平行四边形的识别
2、(判定定理及推论)(1)定义法:两组对边分别平行 的四边形是平行四边形。(2)判定1: 一组对边平行且相等 的四边形是平行四边形。(3)判定2:两组对角分别相等 的四边形是平行四边形。(4)判定3:两组对边分别相等 的四边形是平行四边形。(5)判定4:对角线互相平分 的四边形是平行四边形。4、梯形的定义: 一组对边平行且另一组对边不平行的四边形。5、等腰梯形的性质定理:(1)从角看:等腰梯形同一底上的两个内角相等;(2)从边看:等腰梯形两腰相等;(3)从对角线看:等腰梯形两条对角线相等.6、等腰梯形的判定定理:(1) 在同一底上的两个角相等的梯形是等腰梯形。(2)对角线相等的梯形是等腰梯形。(
3、3)两条腰相等的梯形是等腰梯形.6、等腰梯形的推论:经过梯形一腰的中点与底平行的直线,必平分另一腰。7、梯形的中位线:(1)定义:连接梯形两腰中点的线段叫做 梯形的中位线。(2) 梯形中位线定理: 梯形的中位线平行于两底,并且等于两底和的一半L= (a+b)吃S=LXh&梯形常见辅助线的作法:作法图形延长两腰,转化为三角形E八B C平移一腰,转化为三角形、平行四边形BC作高,转化为两直角三角形和一矩形(平移一对角线,转化为三角形、平行四边形倍长中线,构造全等三角形1倍长中线,构造全等三角形2梯形内平移两腰,转化为两个平行四边形和 一三角形A £ D作中位线(两腰的中点的连线)
4、二、典例精讲及变式训练(一)平行四边形中命题的判断例1:下列说法中,错误的是()A、一组对边平行,另一组对边相等的四边形是平行四边形B、两条对角线互相垂直且平分的四边形是菱形C、四个角都相等的四边形是矩形D邻边相等的矩形是正方形变式训练1:如图,在平行四边形 ABCD中(ABM BC),直线EF 经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点 E、F,下列结论: AO=BO : OE=OF ; 厶 EAM EBN ;厶EAO CNO,其中正确的是匸A. B.C.D.(二)平行四边形性质的运用与考查例2:如图,在平行四边形 ABCD中,E是AD边上的中点.若/ AB
5、E= / EBC , AB=2 , 则平行四边形 ABCD的周长是 。变式训练 2-1:如图,在平行四边形 ABCD中,已知 AD=5cm , AB=3cm , AE平分/ BAD交BC于点E,贝U EC是多少长?变式训练2-2 :在口ABCD中,点E为AD的中点,连接 BE,交AC于点F,则AF : CF =()A . 1: 2 B. 1: 3C. 2: 3(三)平行四边形判定定理的运用与考查例3-1:四边形ABCD中,对角线 AC、BD相交于点 0,给出下列四组条件: AB / CD, AD / BC ;AB=CD , AD=BC :A0=C0 , B0=D0 :AB / CD , AD=
6、BC .其中一定能判定这个四边形是平行四边形的条件有A . 1组B . 2组C. 3组D . 4组变式训练 3-1 :已知四边形 ABCD,从下列条件中:(1) AB / CD , (2) AD / BC , (3) AB=CD , (4) AD=BC , (5) na= n c, (6)n b= n d,任取其中两个,可以得出“四边形abcd是平行四边形:这一结论的情况有(A、4 种B、9 种C、13 种D、15 种例3-2:如图,BD是 ABCD的对角线,AE丄BD于E, CF丄BD于F,求证:四边形 AECF为平行四边形变式训练3-2 :如图,分别以Rt ABC的直角边AC及斜边AB向外
7、作等边 ACD、等边 ABE,已知/ BAC= 30° ,EF丄AB,垂足为F,连结DF。(1) 试说明AC=EF ;(2) 求证:四边形 ADFE是平行四边形。(四)平行四边形判定定理、性质定理及推论的综合运用与考查例4-1:如图,E、F为平行四边形 ABCD 组对边AB、CD的中点,AF与DE相交于点G,BF与CE相交于点 H。求证:四边形 GEHF为平行四边形。变式训练4-1:已知 DAB EAC, FBC都是等边三角形,求证:四边形ADFE为平行四边形。例4-2 :如图,已知平行四边形 ABCD AD=a BE/ AC, DE交AC的延长线于点 F,交BE于E点。(1) 求证
8、:DF=FE(2) AC=2CF A ADE=60 , ACL DC 求 BE 的长;(3) 在(2)的条件下,求四边形 ABED勺面积。变式训练4-2:如图,已知四边形 ABCD的对角线AC、BD相交于点P,过点P作直线,交 AD于点E,交BC 于点F。若PE=PF,且AP+AE=CP+CF。证明:四边形 ABCD为平行四边形。C(五)梯形中常见辅助线的作法例5:延长两腰,将梯形转化成三角形如图,梯形 ABCD 中,AD / BC, AD = 5, BC = 9,/ B = 80°,/ C= 50° .求 AB 的长.变式训练5-1 :如图所示,四边形 ABCD中,AD不
9、平行于BC, AC = BD , AD = BC.判断四边形 ABCD的形状, 并证明你的结论B例5-2:平移一腰,梯形转化成:平行四边形和三角形A、把上下底之差、两腰转化到同一个三角形中。可利用三角形知识解决问题例 2 如图,梯形 ADCB 中,AD / BC , BC = 8cm, AB = 7cm, AD = 6cm,求 DC 的取值范围变式训练5-2 :如图所示,在直角梯形 ABCD中,/ A = 90 ° , AB / DC , AD = 15, AB = 16, BC = 17.求CD的 长例5-3:平移两腰腰,梯形转化成:平行四边形和三角形B、平移两腰,将两腰转化到同一
10、个三角形中在梯形ABCD中,AD / BC , AD<BC , E、F分别为AD、BC的中点,且 EF丄BC ,梯形ABCD是等腰梯 形吗?为什么?变式训练 5-3 :在梯形 ABCD中,AD / BC,AD < BC,E、F分别为AD、BC的中点,且 EF± BC,试说明/ B= / C。例5-4:作梯形的高,梯形转化成矩形与直角三角形如图,在梯形 ABCD中,AD / BC, AB=DC=AD=5 , BC=11 ;求梯形 ABCD的面积。变式训练 5-4:已知:梯形 ABCD 中,/ ABC=90 °,/ C=45 ° , BE 丄CD , AD
11、=1 , CD=2 求:BE例5-5:利用中点,割补三角形如图梯形 ABCD中,AD / BC , E为AB的中点,DE丄CE, 试说明CD = BC + AD。EC变式训练5-5 :如图,在梯形 ABCD中,AD / BC, E是DC的中点,EF丄AB于点F。求证:S梯形ABCD=AB XEF。例5-6:案例说明:平移对角线,将梯形转化成:平行四边形、三角形A、 把上下底之和,两对角线转移到同一个三角形BDE中B、 ABD 与厶CDE面积相等S梯形 ABCD = SA BDEC、BD丄AC推出BD丄DE得到直角三角形 BDE如图所示,在梯形 ABCD中,上底 AD = 1cm,对角线BD丄AC ,且BD = 3cm, AC = 4cm.求下底BC以及 梯形的高。BC(六)等腰梯形的性质与判定的综合运用例 6:在梯形 ABCD 中,AD/BC, E 为 BC 中点,EF丄 A B , EG丄 CD , EF=EG。求证:梯形ABCD为等腰梯形。变式训练6-1 :在梯形ABCD中,AD/BC,/ ACB= / DBC。求证:梯形 ABCD是等腰梯形。变式训练6-2 :如图,在 ABC中,AD丄BC于点D, E、F、G分别是 BC、AB、AC的中点。 求证:四边形DEFG为等腰梯形。B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山西卫生健康职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年安徽汽车职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年宁夏警官职业学院高职单招(数学)历年真题考点含答案解析
- 2025年天津渤海职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 2025年天府新区航空旅游职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 教师说课内容展示
- 《教学工作汇报与总结》
- 护理学妇产科护理学
- 设备安装合同质保协议
- 胸椎骨折术后护理措施
- 育婴行业前景及就业前景
- 2024年美容师考试理论回顾试题及答案
- 老旧城市燃气管道更新改造工程设计方案
- 中医经典临证思维与实践知到课后答案智慧树章节测试答案2025年春浙江中医药大学
- 动火和受限空间作业监护人考试题有答案
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 康复医学科髋关节Harris-、膝关节HSS评分表
- 小学数学问题解决(吴正宪)
- 第五节 胡静-常用正颌外科手术
- 矿井开拓方案比较
- DB23-黑龙江省建设工程施工操作技术规程-城镇道路工程.doc
评论
0/150
提交评论