新椭圆的标准方程课件_第1页
新椭圆的标准方程课件_第2页
新椭圆的标准方程课件_第3页
新椭圆的标准方程课件_第4页
新椭圆的标准方程课件_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、天体的运行天体的运行如何精确地设计、制作、建造出现实生活中这些椭圆形的如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?物件呢?生生活活中中的的椭椭圆圆一一椭圆的画法椭圆的画法?P?F?2?F?1注意注意:椭圆定义中容易遗漏的三处地方:椭圆定义中容易遗漏的三处地方: (1) 必须在平面内必须在平面内; (2)两个定点)两个定点-两点间距离确定两点间距离确定;(常记作常记作2c) (3)绳长)绳长-轨迹上任意点到两定点距离和确定轨迹上任意点到两定点距离和确定. (常记作常记作2a, 且且2a2c) 1 .椭圆定义椭圆定义:平面内与两个定点平面内与两个定点的距离和等于常数的距离和等于常数(

2、大于)的点的轨迹叫作的点的轨迹叫作椭圆椭圆,这两个定点叫做这两个定点叫做椭圆的焦椭圆的焦点点,两焦点间的距离叫做,两焦点间的距离叫做椭圆的焦距椭圆的焦距 12,F F1 2|FF二二思考:在同样的绳长下,两定点间距离较长,则所画出的思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)椭圆较扁(线段);两定点间距离较短,则所画出的两定点间距离较短,则所画出的椭圆较圆(圆)椭圆较圆(圆).由此可知,椭圆的形状与由此可知,椭圆的形状与两定点间距两定点间距离、绳长离、绳长有关有关若2a=F1F2轨迹是什么呢?若2a0),M与与F1和和F2的距离的的距离的和等于正和等于正常数常数2a (2

3、a2c) ,则,则F1、F2的坐标分别是的坐标分别是( c,0)、(c,0) .(问题:下面怎样(问题:下面怎样化简化简?)?)aMFMF2|21222221)(| ,)(|ycxMFycxMFaycxycx2)()(2222 得方程由椭圆的定义得,限制条件由椭圆的定义得,限制条件:代入坐标代入坐标1F2FxyO),( yxM222222bayaxb 两边除以两边除以 得得22ba).0(12222babyax设设所所以以即即,0,2222 cacaca),0(222 bbca由椭圆定义可知由椭圆定义可知整理得整理得2222222)()(44)(ycxycxaaycx 222)(ycxacxa

4、 两边再平方,得两边再平方,得2222222222422yacacxaxaxccxaa )()(22222222caayaxca移项,再平方移项,再平方叫做叫做椭圆的标准方程椭圆的标准方程.它所表示的椭圆的焦点在它所表示的椭圆的焦点在x轴上,轴上,焦点是焦点是 ,中心在坐标原点,中心在坐标原点的椭圆方程的椭圆方程 ,其中其中12(,0)( ,0)FcF c222cba1F2FxyO),(yxM.p01F2Fxy(,a)(0,-a)( a a2 22 22 2)0 0b ba a1 1y yb bx x2 2也是椭圆的标准方程。也是椭圆的标准方程。如果椭圆的焦点在如果椭圆的焦点在y轴上轴上,那么

5、椭圆那么椭圆的标准方程又是的标准方程又是怎样的呢怎样的呢? 如果椭圆的焦点在如果椭圆的焦点在y轴上(选取方式不同,轴上(选取方式不同,调换调换x,y轴)如图所示轴)如图所示,焦点则变成焦点则变成 只要将方程中只要将方程中 的的 调换,即可得调换,即可得12222byaxyx,12(0,),(0, )Fc Fc) 0( 12222babxay总体印象:对称、简洁,总体印象:对称、简洁,“像像”直线方程的截距直线方程的截距式式()012222babyax焦点在焦点在y轴:轴:焦点在焦点在x轴:轴:3.3.椭圆的标准方程椭圆的标准方程: :1oFyx2FMaycxycx2)()(2222axcyxc

6、y2)()(222212yoFFMx()0 12222babyax ()0 12222babxay图图 形形方方 程程焦焦 点点F( (c,0)0)F(0(0,c) )a,b,c之间的关系之间的关系c2 2= =a2 2- -b2 2|MF1|+|MF2|=2a (2a2c0)定定 义义12yoFFMx1oFyx2FM注注: :共同点:共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的中心在坐标原点的椭圆;方程的左边是平方和,右边是左边是平方和,右边是1.2x2y不同点:焦点在不同点:焦点在x轴的椭圆轴的椭圆 项分母较大项分

7、母较大. 焦点在焦点在y轴的椭圆轴的椭圆 项分母较大项分母较大.11625)2(22yx11)3(2222mymx11616)1(22yx0225259)4(22yx123)5(22yx11624)6(22kykx练习练习1.下列方程哪些表示椭圆?下列方程哪些表示椭圆?22,ba 若是若是,则判定其焦点在何轴?则判定其焦点在何轴?并指明并指明 ,写出焦点坐标,写出焦点坐标.?练习练习2.2.求适合下列条件的椭圆的标准方程:求适合下列条件的椭圆的标准方程:(2)焦点为焦点为F1(0,3),F2(0,3),且且a=5;2212516yx2216xy(1)a= ,b=1,焦点在焦点在x x轴上;轴上

8、;6(3)两个焦点分别是两个焦点分别是F1(2,0)、F2(2,0),且过且过P(2,3)点;点; (4)经过点经过点P(2,0)和和Q(0,3).2211 61 2xy22xy+= 149小结:求椭圆标准方程的步骤:小结:求椭圆标准方程的步骤:定位:确定焦点所在的坐标轴;定位:确定焦点所在的坐标轴;定量:求定量:求a, b的值的值.练习练习3. 已知椭圆的方程为:已知椭圆的方程为: ,请,请填空:填空:(1) a=_,b=_,c=_,焦点坐标为,焦点坐标为_,焦距等于焦距等于_.(2)若若C为椭圆上一点,为椭圆上一点,F1、F2分别为椭圆的左、分别为椭圆的左、右焦点,右焦点, 并且并且CF1

9、=2,则则CF2=_. 1162522yx变式:变式: 若椭圆的方程为若椭圆的方程为 ,试口试口答完成(答完成(1).14491622yx5436(-3,0)、(3,0)8116922yx练习练习4.4.已知方程已知方程 表示焦点在表示焦点在x x轴轴上的椭圆,则上的椭圆,则m的取值范围是的取值范围是 . .22xy+=14m(0,4) 变变1 1:已知方程已知方程 表示焦点在表示焦点在y y轴上的椭圆,则轴上的椭圆,则m的取值的取值范围是范围是 . .2222xyxy+=1+=1m -13-mm -13-m(1,2) 已知椭圆的两个焦点坐标分别是已知椭圆的两个焦点坐标分别是(-2,0),(2

10、,0),并且过点,并且过点P,求它的标准方程,求它的标准方程53( ,)22解:由于椭圆的焦点在解:由于椭圆的焦点在x轴,于是轴,于是设椭圆标准方程为设椭圆标准方程为221106xy椭圆方程为椭圆方程为:122|aPFPF由由10,6ab得得只要求出只要求出a、b则可求出椭圆的方程则可求出椭圆的方程22221xyab 如图如图,在圆在圆 上任取一上任取一点点P,过点,过点P作作x轴的垂线段轴的垂线段PD,D为为垂足当点垂足当点P在圆上运动时在圆上运动时,线段线段PD的的中点中点M的轨迹是什么?为什么?的轨迹是什么?为什么?看动画看动画224xyyxo解:设所得曲线上任一点的坐标为解:设所得曲线

11、上任一点的坐标为(x,y), ,圆圆 上的对应点的坐标为(上的对应点的坐标为(x,y),),由题意可得:由题意可得:224xy2xxyy 因为因为即即 为所求轨迹方程为所求轨迹方程所以所以224xy2244xy2214xy如图如图,设点,的坐标分设点,的坐标分别为别为(-5,0),(5,0)直线直线AM,BM相交于点,且它们的斜率之积是相交于点,且它们的斜率之积是,求点的轨迹方程,求点的轨迹方程看动画看动画49xyOABM解:设点的坐标为解:设点的坐标为(x,y) , 因为点的坐标为因为点的坐标为(-5,0) ,所以,直线所以,直线AM的斜率的斜率(5);5AMykxx 同理,直线同理,直线B

12、M的斜率的斜率4(5)559yyxxx 由已知有由已知有221(5).100259xyx 化简化简,得点得点M的轨迹方程为的轨迹方程为(5);5BMykxx变变2:方程:方程 ,分别求方程,分别求方程满足下列条件的满足下列条件的m的取值范围:的取值范围:表示一个圆;表示一个圆;表示一个椭圆;表示一个椭圆;表示焦点在表示焦点在x轴上的椭圆。轴上的椭圆。1162522mymx练习、过椭圆练习、过椭圆 的一个焦点的一个焦点 的直线与椭圆的直线与椭圆交于交于A、B两点,求两点,求 的周长。的周长。2241xy1F2ABFyxoAB1F2F求椭圆标准方程的方法求椭圆标准方程的方法一种方法:一种方法:二类方程二类方程:三个意识:三个意识:求美意识,求美意识, 求简意识,前瞻意识求简意识,前瞻意识 12222byax()0 12222babxay已知椭圆有这样的光学性质:从椭已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一反射后,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论