北师大版数学八上第一章《勾股定理》》教案_第1页
北师大版数学八上第一章《勾股定理》》教案_第2页
北师大版数学八上第一章《勾股定理》》教案_第3页
北师大版数学八上第一章《勾股定理》》教案_第4页
北师大版数学八上第一章《勾股定理》》教案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章 勾股定理回顾与思考一、学生起点分析通过前面三节的学习, 学生已经基本掌握了勾股定理及逆定理的知识, 并能应用勾股定理及其逆定理解决一些具体的实际问题, 因而学生已经具备解决本课问题所需的知识基础和活动经验基础 同时在以前的数学学习中学生已经经历了很多合作学习的过程, 具有了一定的合作学习的经验, 具备了一定的合作与交流的能力八年级学生已初步具有几何图形的观察, 几何证明的理论思维能力 他们希望老师创设便于他们进行观察的几何环境, 给他们发表自己见解和表现自己才华的机会, 希望老师满足他们的创造愿望, 让他们实际操作, 使他们获得施展自己创造才能的机会 但对于勾股定理的综合应用, 还需要

2、学生具备一定的分析、 归纳的思维方法和运用数学的思想意识, 但学生在这一方面的可预见性和耐挫折能力并不是很成熟,可能部分同学会有一些困难二、教学任务分析勾股定理是反映自然界基本规律的一条重要结论, 它揭示了直角三角形三边之间的数量关系, 将形与数密切联系起来, 理论上占有重要的地位, 它有着悠久的历史, 在数学发展中起过重要的作用, 在现实世界中也有着广泛的应用, 勾股定理的应用蕴含着丰富的文化价值 勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用本课时教学是复习课, 强调让学生经历数学知识的形成与应用过程, 鼓励学生自主探索与合作交流,以学生自主探索为主,并

3、强调同桌之间的合作与交流,强化应用意识, 培养学生多方面的能力 让学生通过动手、 动脑、 动口自主探索,感受数学的美,以提高学习兴趣为此,本节课的教学目标是:让学生回顾本章的知识, 同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用在回顾与思考的过程中,提高解决问题,反思问题的能力.在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历 史的再认识,培养爱国主义精神,体验科学给人来带来的力量.三、教学过程设计本节课设计了六个环节.第一环节:情境引入;第二环节:知识结构梳理; 第三环节:合作探究;第四环节:拓展提升;第五环节:交流小结;第六环节: 布置作

4、业.第一环节情境引入勾股定理,我们把它称为世界第一定理.它的重要性,通过这一章的学习已 深有体验,首先,勾股定理是数形结合的最典型的代表;其次,了解勾股定理历 史的同学知道,正是由于勾股定理得发现,导致无理数的发现,引发了数学的第 一次危机,这一点,我们将在实数一章里讲到,第三,勾股定理中的公式是 第一个不定方程,有许许多多的数满足这个方程,也是有完整的解答的最早的不 定方程,最为著名的就是费马大定理,直到1995年,数学家怀尔斯才将它证明.勾股定理是我们数学史的奇迹,我们已经比较完整地研究了这个先人给我们 留下来的宝贵的财富,这节课,我们将通过回顾与思考中的几个问题更进一步了 解勾股定理的历

5、史,勾股定理的应用.目的:通过对勾股定理历史及地位的解读,让学生了解知识脉络及前后联系,激发 学习探究热情.效果:从历史的深度提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:知识结构梳理本章知识要点及结构:(第16题由学生独立思考完成,小组代表展示)1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和. .2c分别表示直角三角形的直角边和斜边,那么 =c .2 .勾股定理各种表达式:在RtAABC中,/ C=90° , / A, /B, /C的对边也分别为a,b,c,则c =, b =, c =.3 .勾股定理的逆定理:在zABC中,若a,b,c三边

6、满足,则4ABC为:4 .勾股数:满足 的三个,称为勾股数.5 .几何体上的最短路程是将立体图形的 展开,车$化为 上的路程问题,再利用 网点之间,解决最短线路问题.6 .直角三角形的边、角之间分别存在着什么关系?(教师引导,小组讨论、总结)从边的关系来说,当然就是勾股定理;从角度的关系来说,由于直角三角形 中有一个特殊的角即直角,所以直角三角形的两个锐角互余.直角三角形作为一个特殊的三角形.如果又有一个锐角是30s,那么30口的角所对的直角边时斜边的一半.7 .举例说明,如何判断一个三角形是直角三角形.判断一个三角形是直角三角形可以从角、边两个方面去判断.(1)从定义即从角出发去判断一个三角

7、形是直角三角形.例如:在 ABC中,/B = 75口,/C=15°,根据三角形的内角和定理,可 得/A = 90)根据定义可判断 ABC是直角三角形.1 1在4ABC中,/A = /B= /C ,由二角形的内角和定理可知,ZA=30S, 23/B=2/A=60 口,/C=3/A = 900 .ABC 是直角三角形.(2)从边出发来判断一个三角形是直角三角形.其实从边来判断直角三角 形它的理论依据就是判定直角三角形的条件(即勾股定理的逆定理).例如: ABC 的三条边分别为a = 7, b = 25, c = 24 , 而 a2+c =7 *242 =625 = 25 =b ,根据勾股

8、定理的逆定理可知 ABC是直角三角 形,但这里要注意的是b所对白角NB = 90)在 ABC三条边的比为a:b:c = 5:12:13,4ABC是直角三角形.8.通过回顾与思考中的问题的交流,由同学们自己建立本章的知识结构图.(小组内展示自己总结的知识框图, 相互交流完善知识框图;每个小组选取 一名代表,展示本组的知识框图.)三边的关系-勾股定理一历史、应用直角三角形1直角三角形的判别一应用目的:复习与直角三有形有关的知识,加强知识的前后联系,把勾股定理及判定纳 入直角三角形的知识体系中,把以前的零散的知识形成知识体系.通过学生相互 交流,整理知识框图复习本章知识点,自觉内化到自身的知识体系中

9、.效果:学生有独立思考的空间,与有合作交流的舞台,动静结合,相得益彰.第三环节:合作探究内容:探究一:利用勾股定理求边长已知直角三角形的两边长分别为 3、4,求第三边长的平方.解:(1)当两直角边为3和4时,第三边长的平方为25;(2)当斜边为4, 一直角边为3时,第三边长的平方为7. 注意事项:因学生习惯了 “勾三股四弦五”的说法,即意味着两直角边为 3和4时,斜边长为5.但这一理解的前提是3、4为直角边.而本题中并未加以任何说明, 因而所求的第三边可能为斜边,但也可能为直角边.探究二:利用勾股定理求图形面积:1.求出下列各图中阴影部分的面积.2_3)第10页 共9页图(1)阴影部分的面积为

10、 ;(答案:1)图(2)阴影部分的面积为 ;(答案:81)图(3)阴影部分的面积为;(答案:5)2, 已知 RtAABC 中,NC=90,若 a + b=14cm, c=10cm,求 RtAABC 的面积.解:_(ab)2 - (a2 b2)1 r- 22(a b) -c4 -122=(14 -10 )4= 24.探究三:利用勾股定理逆定理判定 ABC的形状或求角度1 .在4ABC中,/A, /B, /C的对边分别为a, b, c,且(a叱(a切 毛2, 则().(A) /A为直角(B) /C为直角(C) /B为直角(D)不是直角三角形解:'/ a2 b2 =c2 ,a2 =b2 +c

11、2 .故选(A).注意事项:因为常见的直角三角形表示时,一般将直角标注为 /C,因而有同学就习惯 性的认为/C就一定表示直角,加之对本题所给条件的分析不缜密,导致错误 . 该题中的条件应转化为a2 -b2 =c2 ,即a2 =b2 +c2,因根据这一公式进行判断.2 .已知 ABC的三边为a, b, c,有下列各组条件,判定 ABC的形状.(1) a=41, b=40, c = 9 ; a = m2-n2, b=m2+n2, c = 2mn (mn>0)解:(1) (2)均为直角三角形.探究四:勾股定理及逆定理的综合应用:B港有甲、乙两艘渔船,若甲船沿北偏东 60©方向以每小时

12、8 n mile的速度 前进,乙船沿南偏东某个角度以每小时15 n mile的速度前进,2小时后,甲船到 M岛,乙船到P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?解:甲船航行的距离为 BM=82 = 16 (n mile)乙船航行的距离为 BP=15m2=30 (n mile).2_2_2222. 16 +30 =1156,34 =1156,. BM + BP =MP ,.MBP为直角三角形,.二NMBP=90) .乙船是沿着南偏东30口方向航 行的.注意事项:勾股定理的使用前提是直角三角形, 而本题需对三角形做出判断,判断的依 据是勾定理的逆定理,其形式为“若a2+b2

13、=c2,则/C = 90,学生容易不先对 三角形做出判断而直接应用勾股定理进行计算.目的:通过对四大问题的探究,培养同学们归纳知识的能力,并将各种数学基本思 想方法渗透其中,如对数形结合思想的渗透,鼓励学生由代数表示联想到几何图 形,由几何图形联想到有关代数表示, 从而认识数学的内在联系.如对分类讨论 的渗透,培养学生严谨的数学态度.效果:探究四综合运用勾股定理及其逆定理解决实际问题,这种贴近生活的实例, 训练学生解决实际问题的能力,通过学生的解答和讨论,让学生自我解决疑难, 既是对所学知识的巩固应用,又让学生体验成功的喜悦.第四环节:拓展提升内容:我国汉代数学家赵爽为了证明勾股定理,创制了一

14、副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角 形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为 S1, S2, S3,若 Si+S2+S3=10,则 S2 的值是.目的:f学生可以进一步了解勾股定理的悠久历史和广泛应用, 了解我国古代人民的 聪明才智,在我们的数学史上,好多结论的发现都是这样一个过程, 都是从几个 或大量的特例中发现规律,大胆猜想出结论,然后以前面的理论作为基础,证明 猜想,一个伟大的成果就诞生了,掌握这种研究数学的方法,大胆创新,刻苦钻 研,说不一定你就是未来的商高,第二个赵爽.效果:运用勾股定理和

15、方程思想解决实际问题, 让学生体会生活中处处皆数学,并 且使新知得到了巩固,能力得到了训练,认识得到了升华.第五环节:交流小结内容:师生相互交流总结:1 .本章知识要点及在学习中用到了哪些数学思想方法?2 .你在学习过程中是否积极参与?是否与同伴进行了有效的合作交流?目的:鼓励学生结合本节课的学习谈自己的收获和感想, 体会到勾股定理及其逆定 理的广泛应用及它们的悠久历史.效果:总结解决问题的思路与方法,并学生畅所欲言自己的切身感受与实际收获,赞叹我国古代数学的成就.第六环节:布置作业1 .课本复习题.2 .思考题:一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2 m,坡

16、角/A=30口,2B=90口, BC=6mi当正方形DEFH运动到什么 位置,即当AE= m 时,有DC2 = AE2+BC2 .四、教学设计反思本节课是复习课,利用勾股定理和勾股逆定理来解决实际问题. 勾股定理是 在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,而勾股定理逆用的作用是判定某一个三角形是否是 直角三角形.针对我班学生的知识结构和心理特征,本节课的设计思路是引导学 生“做数学",先由浅入深,在学生的自主探究与合作交流中解决问题,这 样既遵循了学生的认知规律,又充分体现了 “学生是数学学习的主人、 教师是数 学学习的组织者、引导者与合作者”的教学理念 .本节课围绕激趣引入,归纳知 识-综合练习,应用知识一课堂小结三部分,发展学生应用数学的意识与能力, 增强了学生学好数学的愿望和信心. 让学生自己绘制知识网络图,进一步体会本 章所学知识之间的前后联系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论