华师大版八年级下册第17章一次函数单元考试题有详细解答_第1页
华师大版八年级下册第17章一次函数单元考试题有详细解答_第2页
华师大版八年级下册第17章一次函数单元考试题有详细解答_第3页
华师大版八年级下册第17章一次函数单元考试题有详细解答_第4页
华师大版八年级下册第17章一次函数单元考试题有详细解答_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.华师大版八年级下册第章一次函数单元考试题姓名:,成绩:;;一选择题(共12小题,满分48分,每小题4分)1下列y关于x的函数中,是正比例函数的为()Ay=x2By=Cy=Dy=2函数y=+中自变量x的取值范围是()Ax2Bx2且x1Cx2且x1Dx13若函数,则当函数值y=8时,自变量x的值是()A±B4C±或4D4或4小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()ABCD5某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先

2、步行到车站,等小明到了后两人一起乘公共汽车回到学校图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系下列说法错误的是()A小强从家到公共汽车站步行了2公里B小强在公共汽车站等小明用了10分钟C公共汽车的平均速度是30公里/小时D小强乘公共汽车用了20分钟6一次函数y=6x+1的图象不经过()A第一象限B第二象限C第三象限D第四象限7已知m=x+1,n=x+2,若规定y=,则y的最小值为()A0B1C1D28设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A2B2C4D49如图为一次函数y=kx+b(k0)的图象,则下列正确的是()Ak0

3、,b0Bk0,b0Ck0,b0Dk0,b010关于一次函数y=2xl的图象,下列说法正确的是()A图象经过第一、二、三象限B图象经过第一、三、四象限C图象经过第一、二、四象限D图象经过第二、三、四象限11如图,在平面直角坐标系中,点A(1,m)在直线y=2x+3上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=x+b上,则b的值为()A2B1CD212如图,在平面直角坐标系中,点A1,A2,A3都在x轴上,点B1,B2,B3都在直线y=x上,OA1B1,B1A1A2,B2B1A2,B2A2A3,B3B2A3都是等腰直角三角形,且OA1=1,则点B2015的

4、坐标是()AC二填空题(共6小题,满分24分,每小题4分)13同一温度的华氏度数y()与摄氏度数x()之间的函数关系是y=x+32,如果某一温度的摄氏度数是25,那么它的华氏度数是14如果函数y=(m3)x+1m的图象经过第二、三、四象限,那么常数m的取值范围为15如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C恰好落在直线AB上,则点C的坐标为16如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(6,2),阴影三角形部分的面积从左

5、向右依次记为S1、S2、S3、Sn,则第4个正方形的边长是,S3的值为17如图,在平面直角坐标系中,点A的坐标为(0,4),OAB沿x轴向右平移后得到OAB,点A的对应点A是直线y=x上一点,则点B与其对应点B间的距离为18正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上已知A1点的坐标是(0,1),则点B2的坐标为三解答题(共7小题,满分78分)19已知一次函数y=kx+3的图象经过点(1,4)(1)求这个一次函数的解析式;(2)求关于x的不等式kx+36的解集20过点(0,2)的直线l1:y1=kx+b(k0)与直线l2:y2=

6、x+1交于点P(2,m)(1)写出使得y1y2的x的取值范围; (2)求点P的坐标和直线l1的解析式21“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程)请你根据图象回答下列问题(1)这次“龟兔再次赛跑”的路程多少米?(2)兔子和乌龟跑完全程所用时间各是多少?(3)兔子跑完全程的平均速度是多少?(4)请叙述乌龟爬行的全过程22如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=x+7的图象交于点A(1)求点A的坐标;(2)设x轴上有一点

7、P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=x+7的图象于点B、C,连接OC若BC=OA,求OBC的面积23已知y4与x成正比例,且x=6时y=4(1)求y与x的函数关系式(2)此直线在第一象限上有一个动点P(x,y),在x轴上有一点C(2,0)这条直线与x轴相交于点A求PAC的面积S与x之间的函数关系式,并写出自变量x的取值范围24某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:金卡售价600元/张,每次凭卡不再收费银卡售价150元/张,每次凭卡另收10元暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数设游泳x次时,所需总费用为y元(1)分别写出

8、选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算25某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?AB成本(元/瓶)5035利润(元/瓶)2015八年级数学一次函数单元测试题参考答案与试题解析一选择题(共12小题,满分48分,每小题4分)1下列y关于x的函数中,是正比例函数

9、的为()Ay=x2By=Cy=Dy=【考点】正比例函数的定义【分析】根据正比例函数的定义来判断即可得出答案【解答】解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C【点评】本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k0)的函数,那么y就叫做x的正比例函数2函数y=+中自变量x的取值范围是()Ax2Bx2且x1Cx2且x1Dx1【考点】函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以

10、求解【解答】解:根据二次根式有意义,分式有意义得:2x0且x10,解得:x2且x1故选:B【点评】本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数3若函数,则当函数值y=8时,自变量x的值是()A±B4C±或4D4或【考点】函数值【专题】计算题【分析】把y=8直接代入函数即可求出自变量的值【解答】解:把y=8代入函数,先代入上边的方程得x=,x2,x=不合题意舍去,故x=;再代入下边的方程x=4,x2,故x=4,综上,x的值为4或故选:D【点评】本题比较容易,考查求函数值(1)当已知函数解析式时,求函数值就是求代数式的值;(2

11、)函数值是唯一的,而对应的自变量可以是多个4小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()ABCD【考点】函数的图象【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来

12、时的方向不同,故B符合要求故选B【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法5某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系下列说法错误的是()A小强从家到公共汽车站步行了2公里B小强在公共汽车站等小明用了10分钟C公共汽车的平均速度是30公里/小时D小强乘公共汽车用了20分钟【考点】函数的图象【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应

13、的路程,然后确定各自的速度【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一6一次函数y=6x+1的图象不经过()A第一象限B第二象限C第三象限D第四象限【考点】一次函数的性质【专题】存在型;数形结合【分析】先判断出一次函数y=6x+1中k的符

14、号,再根据一次函数的性质进行解答即可【解答】解:一次函数y=6x+1中k=60,b=10,此函数经过一、二、三象限,故选:D【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k0)中,当k0时,函数图象经过一、三象限,当b0时,函数图象与y轴正半轴相交7已知m=x+1,n=x+2,若规定y=,则y的最小值为()A0B1C1D2【考点】一次函数的性质【专题】压轴题;新定义【分析】根据x+1x+2和x+1x+2得出x的取值范围,列出关系式解答即可【解答】解:因为m=x+1,n=x+2,当x+1x+2时,可得:x0.5,则y=1+x+1+x2=2x,则y的最小值为1;当x+1x+2时,可得

15、:x0.5,则y=1x1x+2=2x+2,则y1,故选B【点评】此题考查一次函数问题,关键是根据题意列出关系式分析8设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A2B2C4D4【考点】正比例函数的性质【分析】直接根据正比例函数的性质和待定系数法求解即可【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=2,故选B【点评】本题考查了正比例函数的性质:正比例函数y=kx(k0)的图象为直线,当k0,图象经过第一、三象限,y值随x的增大而增大;当k0,图象经过第二、四象限,y值随x的增大而减小9如图为一次

16、函数y=kx+b(k0)的图象,则下列正确的是()Ak0,b0Bk0,b0Ck0,b0Dk0,b0【考点】一次函数图象与系数的关系【专题】数形结合【分析】根据一次函数经过的象限可得k和b的取值【解答】解:一次函数经过二、四象限,k0,一次函数与y轴的交于正半轴,b0故选C【点评】考查一次函数的图象与系数的关系的知识;用到的知识点为:一次函数经过一三象限或二四象限,k0或0;与y轴交于正半轴,b0,交于负半轴,b010关于一次函数y=2xl的图象,下列说法正确的是()A图象经过第一、二、三象限B图象经过第一、三、四象限C图象经过第一、二、四象限D图象经过第二、三、四象限【考点】一次函数图象与系数

17、的关系【分析】根据一次函数图象的性质解答即可【解答】解:一次函数y=2xl的k=20,函数图象经过第一、三象限,b=10,函数图象与y轴负半轴相交,一次函数y=2xl的图象经过第一、三、四象限故选B【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限k0时,直线必经过二、四象限b0时,直线与y轴正半轴相交b=0时,直线过原点;b0时,直线与y轴负半轴相交11如图,在平面直角坐标系中,点A(1,m)在直线y=2x+3上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B

18、恰好落在直线y=x+b上,则b的值为()A2B1CD2【考点】一次函数图象上点的坐标特征;坐标与图形变化-旋转【专题】压轴题【分析】先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=x+b解答即可【解答】解:把A(1,m)代入直线y=2x+3,可得:m=2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=x+b,可得:1=1+b,b=2,故选D【点评】此题考查一次函数问题,关键是根据代入法解解析式进行分析12如图,在平面直角坐标系中,点A1,A2,A3都在x轴上,点B1,B2,B3都在直线y=x上,OA1B1,B

19、1A1A2,B2B1A2,B2A2A3,B3B2A3都是等腰直角三角形,且OA1=1,则点B2015的坐标是()AC【考点】一次函数图象上点的坐标特征;等腰直角三角形【专题】压轴题;规律型【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据OA1B1,B1A1A2,B2B1A2,B2A2A3,B3B2A3都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3的长度,然后找出规律,求出点B2015的坐标【解答】解:OA1=1,点A1的坐标为(1,0),OA1B1是等腰直角三角形,A1B1=1,B1(1,1),B1A1A2是等腰直角三角形,A1A2=1,B1A2=,B2B1A2为

20、等腰直角三角形,A2A3=2,B2(2,2),同理可得,B3(22,22),B4(23,23),Bn(2n1,2n1),点B2015的坐标是(22014,22014)故选:A【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b也考查了等腰直角三角形的性质二填空题(共6小题,满分24分,每小题4分)13同一温度的华氏度数y()与摄氏度数x()之间的函数关系是y=x+32,如果某一温度的摄氏度数是25,那么它的华氏度数是77【考点】函数值【分析】把x的值代入函数关系式计算求出y值即可【解答】解

21、:当x=25°时,y=×25+32=77,故答案为:77【点评】本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键14如果函数y=(m3)x+1m的图象经过第二、三、四象限,那么常数m的取值范围为1m3【考点】一次函数图象与系数的关系【分析】根据一次函数的性质列出关于m的不等式组,求出m的取值范围即可【解答】解:函数y=(m3)x+1m的图象经过第二、三、四象限,解得1m3故答案为:1m3【点评】本题考查的是一次函数的图象上与系数的关系,熟知一次函数y=kx+b(k0)中,当k0,b0时,函数图象经过第二、三、四象限是解答此题的关键15如图,直线y=2x+

22、4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C恰好落在直线AB上,则点C的坐标为(1,2)【考点】一次函数图象上点的坐标特征;等边三角形的性质;坐标与图形变化-平移【专题】数形结合【分析】先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=1,即可得到C的坐标为(1,2)【解答】解:直线y=2x+4与y轴交于B点,x=0时,得y=4,B(0,4)以OB为边在y轴右侧作等边三角形OBC,C在线段OB的垂直平分线上,C点纵坐标为2将y=2代入y=2x+4,得

23、2=2x+4,解得x=1故答案为:(1,2)【点评】本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化平移,得出C点纵坐标为2是解题的关键16如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(6,2),阴影三角形部分的面积从左向右依次记为S1、S2、S3、Sn,则第4个正方形的边长是3,S3的值为【考点】一次函数图象上点的坐标特征;正方形的性质【专题】压轴题;规律型【分析】根据直线解析式判断出直线与正方形的边围成的三角形是底是高的2倍,再根据点A的坐标求出正方形的边长并得到变化规律表

24、示出第4个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可【解答】解:易知:直线y=x与正方形的边围成的三角形直角边底是高的2倍,后一个正方形的边长是前一个正方形边长的倍,A(6,2),第三个正方形的边长为2,第四个正方形的边长为3;易知,一系列的阴影三角形均为相似三角形,相似比为S2=22+32×2×2×1×3×3×(2+3)=2,S3=2×()2=故答案为:3、【点评】本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,

25、依次求出各正方形的边长是解题的关键,难点在于求出阴影Sn所在的正方形和正方形的边长17如图,在平面直角坐标系中,点A的坐标为(0,4),OAB沿x轴向右平移后得到OAB,点A的对应点A是直线y=x上一点,则点B与其对应点B间的距离为5【考点】一次函数图象上点的坐标特征;坐标与图形变化-平移【分析】根据平移的性质知BB=AA由一次函数图象上点的坐标特征可以求得点A的坐标,所以根据两点间的距离公式可以求得线段AA的长度,即BB的长度【解答】解:如图,连接AA、BB点A的坐标为(0,4),OAB沿x轴向右平移后得到OAB,点A的纵坐标是4又点A的对应点在直线y=x上一点,4=x,解得x=5点A的坐标

26、是(5,4),AA=5根据平移的性质知BB=AA=5故答案为:5【点评】本题考查了一次函数图象上点的坐标特征、坐标与图形变化平移根据平移的性质得到BB=AA是解题的关键18正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上已知A1点的坐标是(0,1),则点B2的坐标为(3,2)【考点】一次函数图象上点的坐标特征;正方形的性质【专题】压轴题;规律型【分析】根据直线解析式先求出OA1=1,求得第一个正方形的边长,再求出第二个正方形的边长为2,即可求得B2的坐标【解答】解:直线y=x+1,当x=0时,y=1,当y=0时,x=1,OA1=1,

27、OD=1,ODA1=45°,A2A1B1=45°,A2B1=A1B1=1,A2C1=C1C2=2,OC2=OC1+C1C2=1+2=3,B2(3,2)故答案为(3,2)【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;求出第一个正方形、第二个正方形的边长是解决问题的关键三解答题(共7小题,满分78分)19已知一次函数y=kx+3的图象经过点(1,4)(1)求这个一次函数的解析式;(2)求关于x的不等式kx+36的解集【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式【分析】(1)把x=1,y=4代入y=kx+3,求出k的值是多少,即可求出这个一次函数的

28、解析式(2)首先把(1)中求出的k的值代入kx+36,然后根据一元一次不等式的解法,求出关于x的不等式kx+36的解集即可【解答】解:(1)一次函数y=kx+3的图象经过点(1,4),4=k+3,k=1,这个一次函数的解析式是:y=x+3(2)k=1,x+36,x3,即关于x的不等式kx+36的解集是:x3【点评】(1)此题主要考查了待定系数法求一次函数的解析式,要熟练掌握,解答此题的关键是要明确待定系数法求一次函数解析式一般步骤是:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方

29、程组,求出待定系数的值,进而写出函数解析式(2)此题还考查了一元一次不等式的解法,要熟练掌握,基本操作方法与解一元一次方程基本相同,都有如下步骤:去分母;去括号;移项;合并同类项;化系数为120过点(0,2)的直线l1:y1=kx+b(k0)与直线l2:y2=x+1交于点P(2,m)(1)写出使得y1y2的x的取值范围; (2)求点P的坐标和直线l1的解析式【考点】两条直线相交或平行问题【专题】计算题【分析】(1)观察函数图象得到当x2时,直线l1在直线l2的下方,则y1y2;(2)先P(2,m)代入y2=x+1可求出m得到P点坐标,然后利用待定系数法求直线l1的解析式【解答】解:(1)当x2

30、时,y1y2;(2)把P(2,m)代入y2=x+1得m=2+1=3,则P(2,3),把P(2,3)和(0,2)分别代入y1=kx+b得,解得,所以直线l1的解析式为:y1=x2【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同21“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程)请你根据图象回答下列问题(1)这次“龟

31、兔再次赛跑”的路程多少米?(2)兔子和乌龟跑完全程所用时间各是多少?(3)兔子跑完全程的平均速度是多少?(4)请叙述乌龟爬行的全过程【考点】函数的图象【分析】(1)根据图象可得这次“龟兔再次赛跑”的路程;(2)根据图象可得兔子和乌龟跑完全程所用时间;(3)根据图象和速度的公式计算即可;(4)根据图象可得乌龟爬行的全过程【解答】解:(1)根据图象可得这次“龟兔再次赛跑”的路程是1000米;(2)根据图象可得兔子和乌龟跑完全程所用时间各是10分钟和60分钟;(3)根据图象可得兔子跑完全程的平均速度=米/分钟;(4)根据图象可得乌龟爬行的全过程是先用30分钟爬了600米,然后休息了10分钟,再用20

32、分钟爬了400米【点评】此题考查函数图象问题,关键是根据图象的信息进行解答和速度公式的计算22如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=x+7的图象交于点A(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=x+7的图象于点B、C,连接OC若BC=OA,求OBC的面积【考点】两条直线相交或平行问题;勾股定理【分析】(1)联立两一次函数的解析式求出x、y的值即可得出A点坐标;(2)过点A作x轴的垂线,垂足为D,在RtOAD中根据勾股定理求出OA的长,故可得出BC的长,根据P(a,0)可用a表示出B、C的坐标,故

33、可得出a的值,由三角形的面积公式即可得出结论【解答】解:(1)由题意得,解得,A(4,3);(2)过点A作x轴的垂线,垂足为D,在RtOAD中,由勾股定理得,OA=5BC=OA=×5=7P(a,0),B(a, a),C(a,a+7),BC=a(a+7)=a7,a7=7,解得a=8,SOBC=BCOP=×7×8=28【点评】本题考查的是两条直线相交或平行问题,根据题意作出辅助线构造出直角三角形是解答此题的关键23已知y4与x成正比例,且x=6时y=4(1)求y与x的函数关系式(2)此直线在第一象限上有一个动点P(x,y),在x轴上有一点C(2,0)这条直线与x轴相交

34、于点A求PAC的面积S与x之间的函数关系式,并写出自变量x的取值范围【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征【分析】(1)根据正比例函数的定义设出函数解析式y4=kx(k0),再把当x=6时,y=4代入求出k的值;(2)点P的纵坐标就是PAC的高,直接写出面积公式【解答】解:(1)y4与x成正比例,设y4=kx(k0)把x=6,y=4代入,得44=6k,解得,k=,则y4=x,y与x的函数关系式为:y=x+4;(2)由(1)知,y与x的函数关系式为:y=x+4当y=0时,x=3,即A(3,0)C(2,0),AC=5S=AC|y|=×|x+4|=x+10(0x3)

35、【点评】本题考查了一次函数图象上点的坐标特征,待定系数法求一次函数解析式点在直线上,则它的坐标满足直线的解析式24某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:金卡售价600元/张,每次凭卡不再收费银卡售价150元/张,每次凭卡另收10元暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算【考点】一次函数的应用【分析】(1)根据银卡售价150元/张,每次

36、凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案【解答】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0x15时,普通消费更划算; 当x=1

37、5时,银卡、普通票的总费用相同,均比金卡合算;当15x45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通片合算;当x45时,金卡消费更划算【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键25某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?AB成本(元/瓶)5035利润(元/瓶)2015【考点】一次函数的应用【专题】图表型【分析】(1)A种品牌白酒x瓶,则B

38、种品牌白酒(600x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出方程,求x的值,再代入(1)求利润【解答】解:(1)A种品牌白酒x瓶,则B种品牌白酒(600x)瓶,依题意,得y=20x+15(600x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600x)瓶,依题意,得50x+35(600x)=26400,解得x=360,每天至

39、少获利y=5x+9000=10800【点评】根据题意,列出利润的函数关系式及成本的关系式,固定成本,可求A种品牌酒的瓶数,再求利润考点卡片1函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义当表达式的分母不含有自变量时,自变量取全体实数例如y=2x+13中的x当表达式的分母中含有自变量时,自变量取值要使分母不为零例如y=x+2x1当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义2函数值函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值注意:当已知函数解析式时,

40、求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;当自变量确定时,函数值是唯一确定的但当函数值唯一确定时,对应的自变量可以是多个3函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象注意:函数图形上的任意点(x,y)都满足其函数的解析式;满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在

41、函数的图象上4正比例函数的定义(1)正比例函数的定义:一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k0,k是正数也可以是负数(2)正比例函数图象的性质正比例函数y=kx(k是常数,k0),我们通常称之为直线y=kx当k0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小(3)“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是y=kx(k是常数,k0)的图象5一次函数的性质

42、一次函数的性质:k0,y随x的增大而增大,函数从左到右上升;k0,y随x的增大而减小,函数从左到右下降由于y=kx+b与y轴交于(0,b),当b0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴6正比例函数的性质正比例函数的性质7一次函数图象与系数的关系由于y=kx+b与y轴交于(0,b),当b0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴k0,b0y=kx+b的图象在一、二、三象限;k0,b0y=kx+b的图象在一、三、四象限;k0,b0y=kx+b的图象在一、二、

43、四象限;k0,b0y=kx+b的图象在二、三、四象限8一次函数图象上点的坐标特征一次函数y=kx+b,(k0,且k,b为常数)的图象是一条直线它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b)直线上任意一点的坐标都满足函数关系式y=kx+b9待定系数法求一次函数解析式待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值10一次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论