电路课件 第五版邱关源第三章_第1页
电路课件 第五版邱关源第三章_第2页
电路课件 第五版邱关源第三章_第3页
电路课件 第五版邱关源第三章_第4页
电路课件 第五版邱关源第三章_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第3章电阻电路的一般分析3.1电路的图3.2KCL和KVL的独立方程数3.3支路电流法3.4网孔电流法3.5回路电流法3.6结点电压法首 页本章重点?重点熟练掌握电路方程的列写方法:支路电流法回路电流法结点电压法返 回?线性电路的一般分析方法? 普遍性:对任何线性电路都适用。复杂电路的一般分析法就是根据 KCL、KVL及元件电压和电流关系列方程、解方程。根据列方程时所选变量的不同可分为支路电流法、回路电流法和结点电压法。? 元件的电压、电流关系特性。? 电路的连接关系KCL,KVL定律。?方法的基础? 系统性:计算方法有规律可循。下 页上 页返 回1.网络图论BDACDCBA哥尼斯堡七桥难题图

2、论是拓扑学的一个分支,是富有趣味和应用极为广泛的一门学科。下 页上 页3.1 电路的图返 回2.电路的图抛开元件性质一个元件作为一条支路 8 5?bn元件的串联及并联组合作为一条支路 6 4?bn543216有向图下 页上 页65432178返 回R4R1R3R2R6uS+_iR5图的定义(Graph)G=支路,结点电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应。图中的结点和支路各自是一个整体。移去图中的支路,与它所联接的结点依然存在,因此允许有孤立结点存在。如把结点移去,则应把与它联接的全部支路同时移去。下 页上 页结论返 回从图G的一个结点出发沿着一些支路

3、连续移动到达另一结点所经过的支路构成路径。(2)路径(3)连通图图G的任意两结点间至少有一条路径时称为连通图,非连通图至少存在两个分离部分。下 页上 页返 回(4)子图若图G1中所有支路和结点都是图G中的支路和结点,则称 G1是G的子图。树(Tree)T是连通图的一个子图且满足下列条件:a. 连通b.包含所有结点c. 不含闭合路径下 页上 页返 回树支:构成树的支路连支:属于G而不属于T的支路树支的数目是一定的连支数:不是树1 ?nbt) 1( ?nbbbbtl树对应一个图有很多的树下 页上 页明确返 回回路(Loop)L是连通图的一个子图,构成一条闭合路径,并满足:(1)连通,(2)每个结点

4、关联2条支路。12345678253124578不是回路回路2)基本回路的数目是一定的,为连支数;) 1( ?nbbll1)对应一个图有很多的回路;3)对于平面电路,网孔数等于基本回路数。下 页上 页明确返 回基本回路(单连支回路)12345651231236支路数树支数连支数结点数1基本回路数1?lnb结点、支路和基本回路关系基本回路具有独占的一条连支下 页上 页结论返 回例例87654321图示为电路的图,画出三种可能的树及其对应的基本回路。876586438243下 页上 页注意网孔为基本回路。返 回3.2 KCL和KVL的独立方程数1.KCL的独立方程数0641?iii65432143

5、2114320543?iii0652?iii0321?iii41230n个结点的电路, 独立的KCL方程为n-1个。下 页上 页结论返 回2.KVL的独立方程数下 页上 页0431?uuu13205421?uuuu0654?uuu0532?uuu12-6543214321对网孔列KVL方程:可以证明通过对以上三个网孔方程进行加、减运算可以得到其他回路的 KVL方程:注意返 回KVL的独立方程数= =基本回路数=b(n1)n个结点、b条支路的电路, 独立的KCL和KVL方程数为:bnbn?) 1() 1(下 页上 页结论返 回3.3 支路电流法对于有n个结点、b条支路的电路,要求解支路电流,未知

6、量共有b个。只要列出b个独立的电路方程,便可以求解这b个变量。1. 支路电流法2. 独立方程的列写下 页上 页以各支路电流为未知量列写电路方程分析电路的方法。从电路的n个结点中任意选择n-1个结点列写KCL方程选择基本回路列写b-(n-1)个KVL方程。返 回例0621?iii1320654?iii0432?iii有6个支路电流,需列写 6个方程。KCL方程:取网孔为独立回路,沿顺时针方向绕行列KVL写方程:0132?uuu0354?uuu0651?uuu回路1回路2回路3123下 页上 页R1R2R3R4R5R6+i2i3i4i1i5i6uS1234返 回应用欧姆定律消去支路电压得:0113

7、322?iRiRiR0335544?iRiRiRSuiRiRiR?665511下 页上 页这一步可以省去0132?uuu0354?uuu0651?uuu回路1回路2回路3R1R2R3R4R5R6+i2i3i4i1i5i6uS1234123返 回(1)支路电流法的一般步骤:标定各支路电流(电压)的参考方向;选定(n1)个结点,列写其KCL方程;选定b(n1)个独立回路,指定回路绕行方向,结合KVL和支路方程列写;求解上述方程,得到 b个支路电流;进一步计算支路电压和进行其它分析。下 页上 页?kkkSuiR小结返 回(2)支路电流法的特点:支路法列写的是 KCL和KVL方程, 所以方程列写方便、

8、直观,但方程数较多,宜于在支路数不多的情况下使用。下 页上 页例1求各支路电流及各电压源发出的功率。12解 n1=1个KCL方程:结点a: I1I2+I3=0b( n1)=2个KVL方程:11I2+7I3= 67I1 11I2=70-6=64? U=?US70V6V7?ba+I1I3I27?11?返 回20371100117111?12187116011641101?40676006471012?A620312181?IA22034062?IA426213?IIIW42070670?PW12626?P下 页上 页70V6V7?ba+I1I3I27?11?21返 回例2结点a: I1I2+I3=

9、0(1) n1=1个KCL方程:列写支路电流方程.(电路中含有理想电流源)解1(2) b( n1)=2个KVL方程:11I2+7I3= U7I1 11I2=70-U增补方程:I2=6A下 页上 页设电流源电压返 回+U_a70V7?b+I1I3I27?11?216A1解解2由于I2已知,故只列写两个方程结点a: I1+I3=6避开电流源支路取回路:7I17I3=70下 页上 页返 回70V7?ba+I1I3I27?11?6A例例3 I1I2+I3=0列写支路电流方程.(电路中含有受控源)解11I2+7I3= 5U7I1 11I2=70-5U增补方程:U=7I3有受控源的电路,方程列写分两步:先

10、将受控源看作独立源列方程;将控制量用未知量表示,并代入中所列的方程,消去中间变量。下 页上 页注意5U+U_70V7?ba+I1I3I27?11?21+_结点a:返 回3.4 网孔电流法?基本思想为减少未知量 (方程)的个数,假想每个回路中有一个回路电流。各支路电流可用回路电流的线性组合表示,来求得电路的解。1.网孔电流法下 页上 页以沿网孔连续流动的假想电流为未知量列写电路方程分析电路的方法称网孔电流法。它仅适用于平面电路。返 回独立回路数为 2。选图示的两个独立回路,支路电流可表示为:1222311 lllliiiiiii?下 页上 页网孔电流在网孔中是闭合的,对每个相关结点均流进一次,流

11、出一次,所以 KCL自动满足。因此网孔电流法是对网孔回路列写 KVL方程,方程数为网孔数。?列写的方程bil1il2+i1i3i2uS1uS2R1R2R3返 回网孔1:R1 il1+R2(il1-il2)-uS1+uS2=0网孔2:R2(il2-il1)+ R3 il2-uS2=0整理得:(R1+ R2)il1-R2il2=uS1-uS2-R2il1+ (R2+R3)il2=uS22. 方程的列写下 页上 页观察可以看出如下规律:R11=R1+R2 网孔1中所有电阻之和,称网孔1的自电阻。il1il2b+i1i3i2uS1uS2R1R2R3返 回R22=R2+R3 网孔2中所有电阻之和,称网孔

12、2的自电阻。自电阻总为正。R12= R21= R2网孔1、网孔2之间的互电阻。当两个网孔电流流过相关支路方向相同时,互电阻取正号;否则为负号。uSl1= uS1-uS2网孔1中所有电压源电压的代数和。uSl2= uS2网孔2中所有电压源电压的代数和。下 页上 页注意il1il2b+i1i3i2uS1uS2R1R2R3返 回当电压源电压方向与该网孔电流方向一致时,取负号;反之取正号。下 页上 页方程的标准形式:对于具有 l 个网孔的电路,有:?slllll lllllsllllllslllllluiRiRiRuiRiRiRuiRiRiR?22112222212111212111?222 212

13、1121 211 1slllsllluiRiRuiRiRil1il2b+i1i3i2uS1uS2R1R2R3返 回Rjk:互电阻+ : 流过互阻的两个网孔电流方向相同;- - : 流过互阻的两个网孔电流方向相反;0 : 无关。Rkk: 自电阻(总为正)下 页上 页?slll22l11l2222212111212111ulllllsllllllslllllliRiRiRuiRiRiRuiRiRiR?注意返 回例1用网孔电流法求解电流 i解选网孔为独立回路:i1i3i2SSUiRiRiRRR?3421141)(0)(35252111?iRiRRRiR0)(35432514?iRRRiRiR无受控源

14、的线性网络 Rjk=Rkj, 系数矩阵为对称阵。当网孔电流均取顺(或逆)时针方向时,Rjk均为负。32iii?下 页上 页RSR5R4R3R1R2US+_i表明返 回(1)网孔电流法的一般步骤:选网孔为独立回路,并确定其绕行方向;以网孔电流为未知量,列写其 KVL方程;求解上述方程,得到 l 个网孔电流;其它分析。求各支路电流;下 页上 页小结(2)网孔电流法的特点:仅适用于平面电路。返 回3.5 回路电流法1.回路电流法下 页上 页以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。它适用于平面和非平面电路。回路电流法是对独立回路列写 KVL方程,方程数为:?列写的方程)

15、1(?nb与支路电流法相比,方程数减少 n-1个。注意返 回2. 方程的列写下 页上 页例用回路电流法求解电流 i.RSR5R4R3R1R2US+_i解只让一个回路电流经过R5支路。SSUiRRiRiRRR?34121141)()(0)()(321252111?iRRiRRRiR0)()()(34321221141?iRRRRiRRiRR2ii ?返 回i1i3i2下 页上 页方程的标准形式:对于具有 l=b-(n-1) 个回路的电路,有:?slllll lllllsllllllslllllluiRiRiRuiRiRiRuiRiRiR?22112222212111212111Rjk:互电阻+

16、: 流过互阻的两个回路电流方向相同;- - : 流过互阻的两个回路电流方向相反;0 : 无关。Rkk: 自电阻(总为正)注意返 回(1)回路法的一般步骤:选定l=b-(n-1)个独立回路,并确定其绕行方向;对l 个独立回路,以回路电流为未知量,列写其KVL方程;求解上述方程,得到 l 个回路电流;其它分析。求各支路电流;下 页上 页小结(2)回路法的特点:通过灵活的选取回路可以减少计算量;互有电阻的识别难度加大,易遗漏互有电阻。返 回3.理想电流源支路的处理?引入电流源电压,增加回路电流和电流源电流的关系方程。例例U_+i1i3i2SSUiRiRiRRR?3421141)(UiRRiR?221

17、11)(UiRRiR?34314)(32SiiI?方程中应包括电流源电压增补方程:下 页上 页ISRSR4R3R1R2US+_返 回?选取独立回路,使理想电流源支路仅仅属于一个回路,该回路电流即 IS 。S34121141S)()(UiRRiRiRRR?例例0)()()(34321221141?iRRRRiRRiRRS2Ii ?已知电流,实际减少了一方程下 页上 页ISRSR4R3R1R2US+_返 回i1i3i24.受控电源支路的处理对含有受控电源支路的电路,可先把受控源看作独立电源按上述方法列方程,再将控制量用回路电流表示。下 页上 页返 回例1i1i3i2SSUiRiRiRRR?3421

18、141)(UiRRiR5)(22111?UiRRiR5)(34314?受控源看作独立源列方程33iRU ?增补方程:增补方程:下 页上 页5URSR4R3R1R2US+_+_U返 回R1R4R5gU1R3R2?U1_+_U1iS例2列回路电流方程解解1选网孔为独立回路1432_+_+U2U3233131)(UiRiRR?3222UUiR?0)(45354313?iRiRRRiR134535 UUiRiR?111iRU?增补方程:Siii?21124gUii?下 页上 页返 回R1R4R5gU1R3R2?U1_+_U1iS解2回路2选大回路Sii ?114gUi ?134242111 )(UiR

19、iRRRiR?0)(4525432413?iRiRRRiRiR)(2111iiRU?增补方程:1432下 页上 页返 回例3求电路中电压U,电流I和电压源产生的功率i1i4i2i3A21?iA33?iA22?i44363214?iiii解解A26/ )41226(4?iA3232?IV8424?iU)吸收吸收(W844?iP下 页上 页4V3A2?+IU3?1?2A2A返 回3.6 结点电压法选结点电压为未知量,则 KVL自动满足,无需列写KVL 方程。各支路电流、电压可视为结点电压的线性组合,求出结点电压后,便可方便地得到各支路电压、电流。?基本思想:1.结点电压法下 页上 页以结点电压为未

20、知量列写电路方程分析电路的方法。适用于结点较少的电路。返 回?列写的方程结点电压法列写的是结点上的 KCL方程,独立方程数为:)1(?n下 页上 页uA-uBuAuB(uA-uB)+uB-uA=0KVL自动满足注意与支路电流法相比,方程数减少 b-(n-1)个。任意选择参考点:其它结点与参考点的电位差即为结点电压(位),方向为从独立结点指向参考结点。返 回2. 方程的列写选定参考结点,标明其余 n-1个独立结点的电压;132下 页上 页列KCL方程:i1+i2=iS1+iS2-i2+i4+i3=0-i3+i5=iS2 SR?入出iiiS1uSiS2R1i1i2i3i4i5R2R5R3R4+_返

21、 回把支路电流用结点电压表示:S2S12n2n11n1iiRuuRu?04n23n3n22n2n1?RuRuuRuu25n33n3n2SSiRuuRuu?下 页上 页i1+i2=iS1+iS2-i2+i4+i3=0-i3+i5=-iS2132iS1uSiS2R1i1i2i3i4i5R2R5R3R4+_返 回整理得:S2S1n22n121)1( )11(iiuRuRR?01 )111(1332n432n12?nuRuRRRuR令Gk=1/Rk,k=1, 2, 3, 4, 5上式简记为:G11un1+G12un2G13un3= iSn15S2n353n23 )11()1(RuiuRRuRS?G21

22、un1+G22un2G23un3= iSn2G31un1+G32un2G33un3= iSn3标准形式的结点电压方程等效电流源下 页上 页返 回G11=G1+G2结点1的自电导G22=G2+G3+G4结点2的自电导G12= G21=-G2结点1与结点2之间的互电导G33=G3+G5结点3的自电导G23= G32=-G3结点2与结点3之间的互电导下 页上 页小结结点的自电导等于接在该结点上所有支路的电导之和。互电导为接在结点与结点之间所有支路的电导之和,总为负值。返 回iSn3=-iS2uS/R5流入结点 3的电流源电流的代数和。iSn1=iS1+iS2流入结点1的电流源电流的代数和。流入结点取

23、正号,流出取负号。1n11Rui ?4n24Rui ?3n3n23Ruui?2n2n12Ruui?5S35Ruuin?由结点电压方程求得各结点电压后即可求得各支路电压,各支路电流可用结点电压表示:下 页上 页返 回G11un1+G12un2+G1,n-1un,n-1=iSn1G21un1+G22un2+G2,n-1un,n-1=iSn2Gn-1,1un1+Gn-1,2un2+Gn-1,nun,n-1=iSn,n-1Gii自电导,总为正。iSni 流入结点i的所有电流源电流的代数和。Gij= Gji互电导,结点i与结点j之间所有支路电导之和,总为负。下 页上 页结点法标准形式的方程:注意电路不含

24、受控源时,系数矩阵为对称阵。返 回结点法的一般步骤:(1)选定参考结点,标定n-1个独立结点;(2)对n-1个独立结点,以结点电压为未知量,列写其KCL方程;(3)求解上述方程,得到n-1个结点电压;(5)其它分析。(4)通过结点电压求各支路电流;下 页上 页总结返 回试列写电路的结点电压方程(G1+G2+GS)U1-G1U2GsU3=GSUS-G1U1+(G1 +G3 + G4)U2-G4U3=0GSU1-G4U2+(G4+G5+GS)U3=USGS例例下 页上 页UsG3G1G4G5G2+_GS312返 回3. 无伴电压源支路的处理以电压源电流为变量,增补结点电压与电压源间的关系。下 页上 页UsG3G1G4G5G2+_312(G1+G2)U1-G1U2=I-G1U1+(G1 +G3 + G4)U2-G4U3=0-G4U2+(G4+G5)U3=IU1-U3 = US增补方程I看成电流源返 回选择合适的参考点U

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论