版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2017-2018学年高一数学上学期期末复习备考之精准复习模拟题2(c卷)新人教版考试时间:120分钟;总分:150分题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第i卷(选择题)评卷人得分一、单选题(每小题5分,共计60分)1下列函数中,既是偶函数又存在零点的是( )ay=lnx by=x2+1 cy=sinx dy=cosx【答案】d【解析】考点:函数的零点;函数奇偶性的判断2若函数的图象与轴有公共点,则实数的取值范围为()a一1,0) b0,1 c d1,+【答案】c.【解析】试题分析:因为函数的图象与轴有公共点,所以有解,即有解. 因
2、为,所以,所以. 故应选c.考点:函数的图像;函数与方程.3已知集合,若,则b等于()a1 b2 c3 d1或2【答案】d【解析】试题分析:集合,集合,若,则或,故选:d考点:交集及其运算4已知定义的r上的偶函数在上是增函数,不等式对任意恒成立,则实数的取值范围是( )a. b. c. d. 【答案】b考点:1、函数的图象与性质;2、恒成立问题.5在平面直角坐标中,的三个顶点a、b、c,下列命题正确的个数是( )(1)平面内点g满足,则g是的重心;(2)平面内点m满足,点m是的内心;(3)平面内点p满足,则点p在边bc的垂线上;a.0 b.1 c.2 d.3【答案】b【解析】试题分析:对(2)
3、,m为的外心,故(2)错.对(3),所以点p在的平分线上,故(3)错.易得(1)正确,故选b.考点:三角形与向量.6在锐角中,有 a且 b且 c且 d且【答案】b【解析】因为是锐角三角形,所以于是有,;即故选b7 ()的值域为 ( )a b c d【答案】c【解析】试题分析:因为,所以,于是由余弦函数的图像及其性质可知,函数 ()的值域为,故应选考点:1、余弦函数的图像及其性质8若将函数的图象向左平移()个单位,所得的图象关于轴对称,则的最小值是( )a. b. c. d. 【答案】c9函数的图象在轴的上方,则实数的取值范围是( )a. b. c. d. 【答案】c【解析】函数的图象在轴的上方
4、,即,又,即.故选:c10下列关系式中正确的是( )a bc d【答案】c【解析】试题分析:因为,又在上单调递增,所以,故选c.考点:1.诱导公式;2.正弦函数的图像与性质.11 下列函数中,函数图象关于y轴对称,且在(0,+)上单调递增的是a b c d【答案】b【解析】试题分析:由函数图象关于y轴对称,则函数为偶函数,排除a,c对于b选项,开口向上,所以在 单调递增,故选b对于d选项,当x>0时,函数为 在 单调递增,故错考点:本题考查函数的奇偶性,单调性点评:解决本题的关键是熟练掌握指数函数,对数函数,幂函数的图象和性质12如下图,在oab中,p为线段ab上的一点,xy,且3,则(
5、 )a、x,y b、x,y c、x,y d、x,y【答案】d【解析】试题分析:由已知3,得,整理,可得x,y考点:向量的加、减运算第ii卷(非选择题)评卷人得分二、填空题(每小题5分,共计20分)13已知函数是偶函数,则 【答案】2 【解析】试题分析:函数是偶函数,2考点:本题考查了函数奇偶性的运用点评:利用函数奇偶性求参数往往用到以下结论:一是奇函数的定义域包括0,一般有f(0)=0,二是一元二次函数为偶函数,则一次项系数为014设集合,集合.若点,则 【答案】-6;【解析】因为集合,集合.若点,则a+6=b,5a-3=b,可知a-b=-6,故答案为-6。15若,则与的夹角为_【答案】【解析
6、】16已知向量,则的最小值是 . 【答案】考点:向量的模点评:本题考查向量的模的最值,解题的关键是能准确的表示出模的函数,再求解最值.评卷人得分三、解答题(总分70分)17(本小题10分)已知函数,(1)用函数单调性定义证明 在上为单调增函数;(2)若,求的值【答案】(1)见解析;(2)【解析】试题分析:(1)在定义域任意的两个数且,通过判断的正负来确定;(2)由题意可知,令,可解得t值,即可求得试题解析:(1)证明设是任意的两个数且, 则,是单调函数(2)解由题意可知,令,则,解得,即,考点:1用定义证明函数的单调性;2解方程18(本小题12分)已知函数对任意的实数都有,且当时, .(1)求
7、证:函数在上是增函数;(2)若关于的不等式的解集为,求的值.【答案】(1)证明见解析;(2).【解析】试题分析:本题考查抽象函数单调性的证明以及用单调性解不等式的问题。(1)根据取值、作差、变形、定符号、下结论的步骤证明即可。(2)根据单调性将函数不等式转化为二次不等式,根据“三个二次”间的关系求解。试题解析:(2)由(1)知 在上是增函数,, 即 , 由题意得不等式的解集为, 方程的两根为, 解得。点睛:(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式。(2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是
8、“三个二次”的核心,通过二次函数的图象贯穿为一体有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法 19(本小题12分)已知函数(其中,)的部分图象如图所示.(1)求,的值; (2)已知在函数图象上的三点的横坐标分别为,求的值.【答案】(1)(2)【解析】解:(1)由图可知,. 1分的最小正周期 所以由,得. 3分 又,且, 所以,解得. 6分(2)因为,所以.设. 7分在等腰三角形中,设,则, ,所以. 13分 20(本小题12分)已知向量, (1)若,求的值;(2)若, ,求的值【答案】(1);(2).【解析】试题分析:(1)由数量积为0得,(2)利用向量模的
9、计算公式得,又,从而组成方程组求得,进一步求得结果试题解析:(1)由可知,所以,所以(2)由可得, ,即,又,且,由可解得, ,所以考点:向量垂直与数量积的关系,向量模的坐标运算,同角三角函数基本关系式,三角计算21(本小题12分)已知渡船在静水中速度的大小为,河水流速的大小为.如图渡船船头方向与水流方向成夹角,且河面垂直宽度为.()求渡船的实际速度与水流速度的夹角;()求渡船过河所需要的时间.提示: 【答案】();()【解析】试题分析:(i)以为原点建立平面直角坐标系,根据两个速度的大小和夹角,可求得两个速度对应的坐标,利用向量的加法坐标匀速,可得和速度的坐标,由此求和和速度的大小和角度.(
10、ii)由(i)结论可求得垂直对岸方向上的速度大小,利用路程除以速度可得时间.试题解析:()以为坐标原点, 所在直线为轴建立平面直角坐标系由条件,知, 由,即所以 所以,即所以渡船的实际速度与水流速度的夹角; ()由()知船垂直方向速度为所以渡船过河所需要的时间 . 22(本小题满分12分)已知函数()的最小正周期为,()求的值;()将函数的图像上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图像,求函数在区间上的最小值.【答案】(1)1;(2)1.【解析】试题分析:()将函数式整理变形为的形式,由函数周期可求得的值;()由()中求得的函数式按照平移规律得到函数,由定义域求得的取值范围,结合函数单调性可求得函数的最小值试题解析:()f(x)=sin(x)cosx+c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州铁路职业技术学院《采矿工程》2023-2024学年第一学期期末试卷
- 2025年浙江省安全员B证(项目经理)考试题库
- 2025黑龙江省安全员考试题库附答案
- 2025年-河北省安全员《B证》考试题库
- 《电影天堂》课件
- 植物的逆境生理-课件
- 上海市初中劳技试题解析2014
- 【大学课件】国际投资的企业形式
- 《植物病原病毒》课件
- 《探析权健肿瘤医院》课件
- 矿山隐蔽致灾普查治理报告
- 零星维修工程 投标方案(技术方案)
- 护理基础测试题+参考答案
- 副总经理招聘面试题与参考回答(某大型国企)2024年
- 2024年SATACT家教培训合同
- 《ESPEN重症病人营养指南(2023版)》解读课件
- 智慧茶园监控系统的设计
- 2024年宜宾发展产城投资限公司第三批员工公开招聘高频难、易错点500题模拟试题附带答案详解
- 2024年省宿州市“宿事速办”12345政务服务便民热线服务中心招考15名工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年安徽省行政执法人员资格认证考试试题含答案
- 中国2型糖尿病运动治疗指南 (2024版)
评论
0/150
提交评论